BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

925 related articles for article (PubMed ID: 34926430)

  • 1. Kinetics of Nanomedicine in Tumor Spheroid as an
    Roy SM; Garg V; Barman S; Ghosh C; Maity AR; Ghosh SK
    Front Bioeng Biotechnol; 2021; 9():785937. PubMed ID: 34926430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening.
    Millard M; Yakavets I; Zorin V; Kulmukhamedova A; Marchal S; Bezdetnaya L
    Int J Nanomedicine; 2017; 12():7993-8007. PubMed ID: 29184400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterotypic tumor spheroids: a platform for nanomedicine evaluation.
    Vakhshiteh F; Bagheri Z; Soleimani M; Ahvaraki A; Pournemat P; Alavi SE; Madjd Z
    J Nanobiotechnology; 2023 Aug; 21(1):249. PubMed ID: 37533100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paclitaxel-loaded expansile nanoparticles enhance chemotherapeutic drug delivery in mesothelioma 3-dimensional multicellular spheroids.
    Lei H; Hofferberth SC; Liu R; Colby A; Tevis KM; Catalano P; Grinstaff MW; Colson YL
    J Thorac Cardiovasc Surg; 2015 May; 149(5):1417-24; discussion 1424-25.e1. PubMed ID: 25841659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions.
    Moradi Kashkooli F; Jakhmola A; Hornsby TK; Tavakkoli JJ; Kolios MC
    J Control Release; 2023 Mar; 355():552-578. PubMed ID: 36773959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicellular tumor spheroids for evaluation of cytotoxicity and tumor growth inhibitory effects of nanomedicines in vitro: a comparison of docetaxel-loaded block copolymer micelles and Taxotere®.
    Mikhail AS; Eetezadi S; Allen C
    PLoS One; 2013; 8(4):e62630. PubMed ID: 23626842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid generation of homogenous tumor spheroid microtissues in a scaffold-free platform for high-throughput screening of a novel combination nanomedicine.
    Abolhassani H; Zaer M; Shojaosadati SA; Hashemi-Najafabadi S
    PLoS One; 2023; 18(2):e0282064. PubMed ID: 36800370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.
    Shapira A; Livney YD; Broxterman HJ; Assaraf YG
    Drug Resist Updat; 2011 Jun; 14(3):150-63. PubMed ID: 21330184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling in cancer nanomedicine: a review.
    Dogra P; Butner JD; Chuang YL; Caserta S; Goel S; Brinker CJ; Cristini V; Wang Z
    Biomed Microdevices; 2019 Apr; 21(2):40. PubMed ID: 30949850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles.
    Abreu TR; Biscaia M; Gonçalves N; Fonseca NA; Moreira JN
    Adv Exp Med Biol; 2021; 1295():271-299. PubMed ID: 33543464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids.
    Lazzari G; Vinciguerra D; Balasso A; Nicolas V; Goudin N; Garfa-Traore M; Fehér A; Dinnyés A; Nicolas J; Couvreur P; Mura S
    Eur J Pharm Biopharm; 2019 Sep; 142():195-203. PubMed ID: 31228557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research.
    Huang BW; Gao JQ
    J Control Release; 2018 Jan; 270():246-259. PubMed ID: 29233763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A collagen-based multicellular tumor spheroid model for evaluation of the efficiency of nanoparticle drug delivery.
    Le VM; Lang MD; Shi WB; Liu JW
    Artif Cells Nanomed Biotechnol; 2016; 44(2):540-4. PubMed ID: 25315504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotherapeutics in oral and parenteral drug delivery: Key learnings and future outlooks as we think small.
    Tyagi P; Subramony JA
    J Control Release; 2018 Feb; 272():159-168. PubMed ID: 29355619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators.
    Yang Y; Zhang M; Song H; Yu C
    Acc Chem Res; 2020 Aug; 53(8):1545-1556. PubMed ID: 32667182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an in vitro tumor spheroid culture model amenable to high-throughput testing of potential anticancer nanotherapeutics.
    Solomon MA; Lemera J; D'Souza GG
    J Liposome Res; 2016 Sep; 26(3):246-60. PubMed ID: 26780923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.