These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 34926843)
61. [Analysis of the Composition of Atmospheric Fine Particles (PM Xie RJ; Hou HX; Chen YS Huan Jing Ke Xue; 2018 Apr; 39(4):1484-1492. PubMed ID: 29964972 [TBL] [Abstract][Full Text] [Related]
62. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia. He C; Miljevic B; Crilley LR; Surawski NC; Bartsch J; Salimi F; Uhde E; Schnelle-Kreis J; Orasche J; Ristovski Z; Ayoko GA; Zimmermann R; Morawska L Environ Int; 2016 May; 91():230-42. PubMed ID: 26989811 [TBL] [Abstract][Full Text] [Related]
63. Impact of COVID-19 lockdown on air quality in Chandigarh, India: Understanding the emission sources during controlled anthropogenic activities. Mor S; Kumar S; Singh T; Dogra S; Pandey V; Ravindra K Chemosphere; 2021 Jan; 263():127978. PubMed ID: 33297028 [TBL] [Abstract][Full Text] [Related]
64. Mapping exposure to particulate pollution during severe haze episode using improved MODIS AOT-PM Leelasakultum K; Kim Oanh NT Geohealth; 2017 Jun; 1(4):165-179. PubMed ID: 32190788 [TBL] [Abstract][Full Text] [Related]
65. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
66. Different relationships between personal exposure and ambient concentration by particle size. Guak S; Lee K Environ Sci Pollut Res Int; 2018 Jun; 25(17):16945-16950. PubMed ID: 29623646 [TBL] [Abstract][Full Text] [Related]
67. Investigation into presence of atmospheric particulate matter in Marikana, mining area in Rustenburg Town, South Africa. Kaonga B; Kgabi NA Environ Monit Assess; 2011 Jul; 178(1-4):213-20. PubMed ID: 20865322 [TBL] [Abstract][Full Text] [Related]
68. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand. Pengchai P; Chantara S; Sopajaree K; Wangkarn S; Tengcharoenkul U; Rayanakorn M Environ Monit Assess; 2009 Jul; 154(1-4):197-218. PubMed ID: 18688736 [TBL] [Abstract][Full Text] [Related]
69. [Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring]. Gao S; Pan XC; Madaniyazi LN; Xie J; He YH Zhonghua Yu Fang Yi Xue Za Zhi; 2013 Sep; 47(9):837-42. PubMed ID: 24351566 [TBL] [Abstract][Full Text] [Related]
71. Linkage between Airborne Particulate Matter and Viral Pandemic COVID-19 in Bucharest. Zoran M; Savastru R; Savastru D; Tautan M; Tenciu D Microorganisms; 2023 Oct; 11(10):. PubMed ID: 37894189 [TBL] [Abstract][Full Text] [Related]
72. Exposure and health impacts of outdoor particulate matter in two urban and industrialized area of Tabriz, Iran. Gholampour A; Nabizadeh R; Naseri S; Yunesian M; Taghipour H; Rastkari N; Nazmara S; Faridi S; Mahvi AH J Environ Health Sci Eng; 2014 Jan; 12(1):27. PubMed ID: 24411011 [TBL] [Abstract][Full Text] [Related]
73. Association between particulate matter air pollution and cardiovascular disease mortality in Lanzhou, China. Wu T; Ma Y; Wu X; Bai M; Peng Y; Cai W; Wang Y; Zhao J; Zhang Z Environ Sci Pollut Res Int; 2019 May; 26(15):15262-15272. PubMed ID: 30929170 [TBL] [Abstract][Full Text] [Related]
74. Investigation of the influence of mineral dust on airborne particulate matter during the COVID-19 epidemic in spring 2020 over China. Liang L; Han Z; Li J; Liang M Atmos Pollut Res; 2022 Jun; 13(6):101424. PubMed ID: 35492578 [TBL] [Abstract][Full Text] [Related]
75. Two decades of trends in urban particulate matter concentrations across Australia. de Jesus AL; Thompson H; Knibbs LD; Hanigan I; De Torres L; Fisher G; Berko H; Morawska L Environ Res; 2020 Nov; 190():110021. PubMed ID: 32784017 [TBL] [Abstract][Full Text] [Related]
76. Estimation of daily PM Stafoggia M; Schwartz J; Badaloni C; Bellander T; Alessandrini E; Cattani G; De' Donato F; Gaeta A; Leone G; Lyapustin A; Sorek-Hamer M; de Hoogh K; Di Q; Forastiere F; Kloog I Environ Int; 2017 Feb; 99():234-244. PubMed ID: 28017360 [TBL] [Abstract][Full Text] [Related]
77. Particulate matter in California: part 2--Spatial, temporal, and compositional patterns of PM2.5, PM10-2.5, and PM10. Motallebi N; Taylor CA; Croes BE J Air Waste Manag Assoc; 2003 Dec; 53(12):1517-30. PubMed ID: 14700138 [TBL] [Abstract][Full Text] [Related]
78. Carbonaceous characteristics of atmospheric particulate matter in Hong Kong. Ho KF; Lee SC; Yu JC; Zou SC; Fung K Sci Total Environ; 2002 Dec; 300(1-3):59-67. PubMed ID: 12685471 [TBL] [Abstract][Full Text] [Related]
79. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Zoran MA; Savastru RS; Savastru DM; Tautan MN Sci Total Environ; 2020 Oct; 738():139825. PubMed ID: 32512362 [TBL] [Abstract][Full Text] [Related]
80. Effect of COVID-19-restrictive measures on ambient particulate matter pollution in Yangon, Myanmar. Aung WY; Paw-Min-Thein-Oo ; Thein ZL; Matsuzawa S; Suzuki T; Ishigaki Y; Fushimi A; Mar O; Nakajima D; Win-Shwe TT Environ Health Prev Med; 2021 Sep; 26(1):92. PubMed ID: 34536991 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]