These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34926877)

  • 1. Photoredox Chemistry with Organic Catalysts: Role of Computational Methods.
    Kron KJ; Rodriguez-Katakura A; Elhessen R; Mallikarjun Sharada S
    ACS Omega; 2021 Dec; 6(49):33253-33264. PubMed ID: 34926877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox catalysis
    Lee YM; Nam W; Fukuzumi S
    Chem Sci; 2023 Apr; 14(16):4205-4218. PubMed ID: 37123199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing High-Triplet-Yield Phenothiazine Donor-Acceptor Complexes for Photoredox Catalysis.
    Sartor SM; Chrisman CH; Pearson RM; Miyake GM; Damrauer NH
    J Phys Chem A; 2020 Feb; 124(5):817-823. PubMed ID: 31918550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions.
    Majek M; Jacobi von Wangelin A
    Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the role of charge transfer state during ultrafast intersystem crossing in compact organic chromophores.
    Lv M; Wang X; Wang D; Li X; Liu Y; Pan H; Zhang S; Xu J; Chen J
    Phys Chem Chem Phys; 2021 Nov; 23(45):25455-25466. PubMed ID: 34818402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production.
    Rahman MZ; Mullins CB
    Acc Chem Res; 2019 Jan; 52(1):248-257. PubMed ID: 30596234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic photoredox catalysts for CO
    Kron KJ; Rodriguez-Katakura A; Regu P; Reed MN; Elhessen R; Mallikarjun Sharada S
    J Chem Phys; 2022 May; 156(18):184109. PubMed ID: 35568537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halide Photoredox Chemistry.
    Troian-Gautier L; Turlington MD; Wehlin SAM; Maurer AB; Brady MD; Swords WB; Meyer GJ
    Chem Rev; 2019 Apr; 119(7):4628-4683. PubMed ID: 30854847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting Charge-Transfer States for Maximizing Intersystem Crossing Yields in Organic Photoredox Catalysts.
    Sartor SM; McCarthy BG; Pearson RM; Miyake GM; Damrauer NH
    J Am Chem Soc; 2018 Apr; 140(14):4778-4781. PubMed ID: 29595966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal Quantum Dots as Photocatalysts for Triplet Excited State Reactions of Organic Molecules.
    Jiang Y; Weiss EA
    J Am Chem Soc; 2020 Sep; 142(36):15219-15229. PubMed ID: 32810396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and characterization of an acridine radical photoreductant.
    MacKenzie IA; Wang L; Onuska NPR; Williams OF; Begam K; Moran AM; Dunietz BD; Nicewicz DA
    Nature; 2020 Apr; 580(7801):76-80. PubMed ID: 32238940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics.
    Mills IN; Porras JA; Bernhard S
    Acc Chem Res; 2018 Feb; 51(2):352-364. PubMed ID: 29336548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Electron Donor-Acceptor Photoredox Catalysts: Enhanced Catalytic Efficiency toward Controlled Radical Polymerization.
    Xu J; Shanmugam S; Boyer C
    ACS Macro Lett; 2015 Sep; 4(9):926-932. PubMed ID: 35596459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and Characterization of Exciplexes in Photoredox CO
    Kron KJ; Hunt JR; Dawlaty JM; Mallikarjun Sharada S
    J Phys Chem A; 2022 Apr; 126(15):2319-2329. PubMed ID: 35385660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor-Acceptor Cyanoarenes.
    Speckmeier E; Fischer TG; Zeitler K
    J Am Chem Soc; 2018 Nov; 140(45):15353-15365. PubMed ID: 30277767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 9-Cyano-10-methoxycarbonylanthracene as a Visible Organic Photoredox Catalyst in the Two-Molecule Photoredox System.
    Tajimi Y; Nachi Y; Inada R; Hashimoto R; Yamawaki M; Ohkubo K; Morita T; Yoshimi Y
    J Org Chem; 2022 Jun; 87(11):7405-7413. PubMed ID: 35604396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.