These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34926933)

  • 1. Transformer-Based Generative Model Accelerating the Development of Novel BRAF Inhibitors.
    Yang L; Yang G; Bing Z; Tian Y; Niu Y; Huang L; Yang L
    ACS Omega; 2021 Dec; 6(49):33864-33873. PubMed ID: 34926933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UnCorrupt SMILES: a novel approach to de novo design.
    Schoenmaker L; Béquignon OJM; Jespers W; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):22. PubMed ID: 36788579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design.
    Haroon S; C A H; A S J
    Comput Biol Chem; 2023 Oct; 106():107911. PubMed ID: 37450999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Drug Design Using Transformer-Based Machine Translation and Reinforcement Learning of an Adaptive Monte Carlo Tree Search.
    Ang D; Rakovski C; Atamian HS
    Pharmaceuticals (Basel); 2024 Jan; 17(2):. PubMed ID: 38399376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GEN: highly efficient SMILES explorer using autodidactic generative examination networks.
    van Deursen R; Ertl P; Tetko IV; Godin G
    J Cheminform; 2020 Apr; 12(1):22. PubMed ID: 33430998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning.
    Liu X; Ye K; van Vlijmen HWT; IJzerman AP; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):24. PubMed ID: 36803659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation.
    Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ
    J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De Novo Molecular Design of Caspase-6 Inhibitors by a GRU-Based Recurrent Neural Network Combined with a Transfer Learning Approach.
    Huang S; Mei H; Lu L; Qiu M; Liang X; Xu L; Kuang Z; Heng Y; Pan X
    Pharmaceuticals (Basel); 2021 Nov; 14(12):. PubMed ID: 34959651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing reinforcement learning for de novo molecular design applying self-attention mechanisms.
    Pereira TO; Abbasi M; Arrais JP
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing optimized drug candidates with Generative Adversarial Network.
    Abbasi M; Santos BP; Pereira TC; Sofia R; Monteiro NRC; Simões CJV; Brito RMM; Ribeiro B; Oliveira JL; Arrais JP
    J Cheminform; 2022 Jun; 14(1):40. PubMed ID: 35754029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MassGenie: A Transformer-Based Deep Learning Method for Identifying Small Molecules from Their Mass Spectra.
    Shrivastava AD; Swainston N; Samanta S; Roberts I; Wright Muelas M; Kell DB
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RM-GPT: Enhance the comprehensive generative ability of molecular GPT model via LocalRNN and RealFormer.
    Fan W; He Y; Zhu F
    Artif Intell Med; 2024 Apr; 150():102827. PubMed ID: 38553166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative Models for De Novo Drug Design.
    Tong X; Liu X; Tan X; Li X; Jiang J; Xiong Z; Xu T; Jiang H; Qiao N; Zheng M
    J Med Chem; 2021 Oct; 64(19):14011-14027. PubMed ID: 34533311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation.
    Wang Y; Zhao H; Sciabola S; Wang W
    Molecules; 2023 May; 28(11):. PubMed ID: 37298906
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Zhang J; Chen H
    J Chem Inf Model; 2022 Jul; 62(14):3291-3306. PubMed ID: 35793555
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Staker J; Marshall K; Leswing K; Robertson T; Halls MD; Goldberg A; Morisato T; Maeshima H; Ando T; Arai H; Sasago M; Fujii E; Matsuzawa NN
    J Phys Chem A; 2022 Sep; 126(34):5837-5852. PubMed ID: 35984470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design.
    Song T; Ren Y; Wang S; Han P; Wang L; Li X; Rodriguez-Patón A
    Methods; 2023 Mar; 211():10-22. PubMed ID: 36764588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Augmented Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule generation.
    Thomas M; O'Boyle NM; Bender A; de Graaf C
    J Cheminform; 2022 Oct; 14(1):68. PubMed ID: 36192789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.