These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34926996)

  • 1. Development of a repository of computable phenotype definitions using the clinical quality language.
    Brandt PS; Pacheco JA; Rasmussen LV
    JAMIA Open; 2021 Oct; 4(4):ooab094. PubMed ID: 34926996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing variability of electronic health record-driven phenotype definitions.
    Brandt PS; Kho A; Luo Y; Pacheco JA; Walunas TL; Hakonarson H; Hripcsak G; Liu C; Shang N; Weng C; Walton N; Carrell DS; Crane PK; Larson EB; Chute CG; Kullo IJ; Carroll R; Denny J; Ramirez A; Wei WQ; Pathak J; Wiley LK; Richesson R; Starren JB; Rasmussen LV
    J Am Med Inform Assoc; 2023 Feb; 30(3):427-437. PubMed ID: 36474423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of a FHIR-based EHR-driven phenotyping toolbox.
    Brandt PS; Pacheco JA; Adekkanattu P; Sholle ET; Abedian S; Stone DJ; Knaack DM; Xu J; Xu Z; Peng Y; Benda NC; Wang F; Luo Y; Jiang G; Pathak J; Rasmussen LV
    J Am Med Inform Assoc; 2022 Aug; 29(9):1449-1460. PubMed ID: 35799370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward cross-platform electronic health record-driven phenotyping using Clinical Quality Language.
    Brandt PS; Kiefer RC; Pacheco JA; Adekkanattu P; Sholle ET; Ahmad FS; Xu J; Xu Z; Ancker JS; Wang F; Luo Y; Jiang G; Pathak J; Rasmussen LV
    Learn Health Syst; 2020 Oct; 4(4):e10233. PubMed ID: 33083538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of a Fast Healthcare Interoperability Resources (FHIR)-based Ontology for Federated Feasibility Queries in the Context of COVID-19: Feasibility Study.
    Rosenau L; Majeed RW; Ingenerf J; Kiel A; Kroll B; Köhler T; Prokosch HU; Gruendner J
    JMIR Med Inform; 2022 Apr; 10(4):e35789. PubMed ID: 35380548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries.
    Hong N; Wen A; Stone DJ; Tsuji S; Kingsbury PR; Rasmussen LV; Pacheco JA; Adekkanattu P; Wang F; Luo Y; Pathak J; Liu H; Jiang G
    J Biomed Inform; 2019 Nov; 99():103310. PubMed ID: 31622801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CQL4NLP: Development and Integration of FHIR NLP Extensions in Clinical Quality Language for EHR-driven Phenotyping.
    Wen A; Rasmussen LV; Stone D; Liu S; Kiefer R; Adekkanattu P; Brandt PS; Pacheco JA; Luo Y; Wang F; Pathak J; Liu H; Jiang G
    AMIA Jt Summits Transl Sci Proc; 2021; 2021():624-633. PubMed ID: 34457178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Architecture of a Feasibility Query Portal for Distributed COVID-19 Fast Healthcare Interoperability Resources (FHIR) Patient Data Repositories: Design and Implementation Study.
    Gruendner J; Deppenwiese N; Folz M; Köhler T; Kroll B; Prokosch HU; Rosenau L; Rühle M; Scheidl MA; Schüttler C; Sedlmayr B; Twrdik A; Kiel A; Majeed RW
    JMIR Med Inform; 2022 May; 10(5):e36709. PubMed ID: 35486893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Healthcare Interoperability Resources, Clinical Quality Language, and Systematized Nomenclature of Medicine-Clinical Terms in Representing Clinical Evidence Logic Statements for the Use of Imaging Procedures: Descriptive Study.
    Odigie E; Lacson R; Raja A; Osterbur D; Ip I; Schneider L; Khorasani R
    JMIR Med Inform; 2019 May; 7(2):e13590. PubMed ID: 31094359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ResultsMyWay: combining Fast Healthcare Interoperability Resources (FHIR), Clinical Quality Language (CQL), and informational resources to create a newborn screening application.
    Watkins M; Au A; Vuong T; Wallis H; Hart K; Rohrwasser A; Eilbeck K
    AMIA Jt Summits Transl Sci Proc; 2021; 2021():615-623. PubMed ID: 34457177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in replicating secondary analysis of electronic health records data with multiple computable phenotypes: A case study on methicillin-resistant Staphylococcus aureus bacteremia infections.
    Jun I; Rich SN; Chen Z; Bian J; Prosperi M
    Int J Med Inform; 2021 Sep; 153():104531. PubMed ID: 34332468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Framework to Support the Sharing and Reuse of Computable Phenotype Definitions Across Health Care Delivery and Clinical Research Applications.
    Richesson RL; Smerek MM; Blake Cameron C
    EGEMS (Wash DC); 2016; 4(3):1232. PubMed ID: 27563686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a scalable FHIR-based clinical data normalization pipeline for standardizing and integrating unstructured and structured electronic health record data.
    Hong N; Wen A; Shen F; Sohn S; Wang C; Liu H; Jiang G
    JAMIA Open; 2019 Dec; 2(4):570-579. PubMed ID: 32025655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Fast Health Interoperability Resources (FHIR) Standard: Systematic Literature Review of Implementations, Applications, Challenges and Opportunities.
    Ayaz M; Pasha MF; Alzahrani MY; Budiarto R; Stiawan D
    JMIR Med Inform; 2021 Jul; 9(7):e21929. PubMed ID: 34328424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fast Healthcare Interoperability Resources (FHIR) layer implemented over i2b2.
    Boussadi A; Zapletal E
    BMC Med Inform Decis Mak; 2017 Aug; 17(1):120. PubMed ID: 28806953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Healthcare Interoperability Resources (FHIR) for Interoperability in Health Research: Systematic Review.
    Vorisek CN; Lehne M; Klopfenstein SAI; Mayer PJ; Bartschke A; Haese T; Thun S
    JMIR Med Inform; 2022 Jul; 10(7):e35724. PubMed ID: 35852842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desiderata for computable representations of electronic health records-driven phenotype algorithms.
    Mo H; Thompson WK; Rasmussen LV; Pacheco JA; Jiang G; Kiefer R; Zhu Q; Xu J; Montague E; Carrell DS; Lingren T; Mentch FD; Ni Y; Wehbe FH; Peissig PL; Tromp G; Larson EB; Chute CG; Pathak J; Denny JC; Speltz P; Kho AN; Jarvik GP; Bejan CA; Williams MS; Borthwick K; Kitchner TE; Roden DM; Harris PA
    J Am Med Inform Assoc; 2015 Nov; 22(6):1220-30. PubMed ID: 26342218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Production of Research Data Marts from a Canonical Fast Healthcare Interoperability Resource (FHIR) Data Repository: Applications to COVID-19 Research.
    Lenert LA; Ilatovskiy AV; Agnew J; Rudsill P; Jacobs J; Weatherston D; Deans K
    medRxiv; 2021 Mar; ():. PubMed ID: 33758877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a content agnostic computable knowledge repository for data quality assessment.
    Rajan NS; Gouripeddi R; Mo P; Madsen RK; Facelli JC
    Comput Methods Programs Biomed; 2019 Aug; 177():193-201. PubMed ID: 31319948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast Healthcare Interoperability Resources (FHIR) as a Meta Model to Integrate Common Data Models: Development of a Tool and Quantitative Validation Study.
    Pfaff ER; Champion J; Bradford RL; Clark M; Xu H; Fecho K; Krishnamurthy A; Cox S; Chute CG; Overby Taylor C; Ahalt S
    JMIR Med Inform; 2019 Oct; 7(4):e15199. PubMed ID: 31621639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.