These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34927031)

  • 1. Reducing the life cycle environmental impact of electric vehicles through emissions-responsive charging.
    Tang Y; Cockerill TT; Pimm AJ; Yuan X
    iScience; 2021 Dec; 24(12):103499. PubMed ID: 34927031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marginal Greenhouse Gas Emissions of Ontario's Electricity System and the Implications of Electric Vehicle Charging.
    Gai Y; Wang A; Pereira L; Hatzopoulou M; Posen ID
    Environ Sci Technol; 2019 Jul; 53(13):7903-7912. PubMed ID: 31244061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles.
    Woody M; Vaishnav P; Craig MT; Lewis GM; Keoleian GA
    Environ Sci Technol; 2021 Jul; 55(14):10108-10120. PubMed ID: 34240846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hourly Power Grid Variations, Electric Vehicle Charging Patterns, and Operating Emissions.
    Miller I; Arbabzadeh M; Gençer E
    Environ Sci Technol; 2020 Dec; 54(24):16071-16085. PubMed ID: 33241682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A scenario-based approach to predict energy demand and carbon emission of electric vehicles on the electric grid.
    Cheung WM
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77300-77310. PubMed ID: 35676573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensuring greenhouse gas reductions from electric vehicles compared to hybrid gasoline vehicles requires a cleaner U.S. electricity grid.
    Singh M; Yuksel T; Michalek JJ; Azevedo IML
    Sci Rep; 2024 Jan; 14(1):1639. PubMed ID: 38238349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.
    Tamayao MA; Michalek JJ; Hendrickson C; Azevedo IM
    Environ Sci Technol; 2015 Jul; 49(14):8844-55. PubMed ID: 26125323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy, Emissions, and Cost Impacts of Charging Price Strategies for Electric Vehicles.
    Li X; Jenn A
    Environ Sci Technol; 2022 May; 56(9):5724-5733. PubMed ID: 35418227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.
    Michalek JJ; Chester M; Jaramillo P; Samaras C; Shiau CS; Lave LB
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16554-8. PubMed ID: 21949359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast-Charging Energy Storage.
    Kamath D; Arsenault R; Kim HC; Anctil A
    Environ Sci Technol; 2020 Jun; 54(11):6878-6887. PubMed ID: 32343124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.
    Samaras C; Meisterling K
    Environ Sci Technol; 2008 May; 42(9):3170-6. PubMed ID: 18522090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles.
    Moro A; Lonza L
    Transp Res D Transp Environ; 2018 Oct; 64():5-14. PubMed ID: 30740029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.
    Sioshansi R; Denholm P
    Environ Sci Technol; 2009 Feb; 43(4):1199-204. PubMed ID: 19320180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and simulation of 4 kW solar power-based hybrid EV charging station.
    Singla P; Boora S; Singhal P; Mittal N; Mittal V; Gared F
    Sci Rep; 2024 Mar; 14(1):7336. PubMed ID: 38538667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of regular and smart grids with PV for Electrification of an academic campus with EV charging.
    Rehman S; Mohammed AB; Alhems L; Alsulaiman F
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77593-77604. PubMed ID: 37261683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.