These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34927045)

  • 1. Novel glucose-responsive nanoparticles based on p-hydroxyphenethyl anisate and 3-acrylamidophenylboronic acid reduce blood glucose and ameliorate diabetic nephropathy.
    Ma Q; Bian L; Zhao X; Tian X; Yin H; Wang Y; Shi A; Wu J
    Mater Today Bio; 2022 Jan; 13():100181. PubMed ID: 34927045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles prepared from pterostilbene reduce blood glucose and improve diabetes complications.
    Zhao X; Shi A; Ma Q; Yan X; Bian L; Zhang P; Wu J
    J Nanobiotechnology; 2021 Jun; 19(1):191. PubMed ID: 34176494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-Sensitive Nanoparticles Based On Poly(3-Acrylamidophenylboronic Acid-Block-N-Vinylcaprolactam) For Insulin Delivery.
    Wu JZ; Yang Y; Li S; Shi A; Song B; Niu S; Chen W; Yao Z
    Int J Nanomedicine; 2019; 14():8059-8072. PubMed ID: 31632018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylboronic acid-diol crosslinked 6-O-vinylazeloyl-d-galactose nanocarriers for insulin delivery.
    Wu JZ; Bremner DH; Li HY; Niu SW; Li SD; Zhu LM
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():845-855. PubMed ID: 28482599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galactose-based polymer-containing phenylboronic acid as carriers for insulin delivery.
    Zhong Y; Song B; He D; Xia Z; Wang P; Wu J; Li Y
    Nanotechnology; 2020 Sep; 31(39):395601. PubMed ID: 32554896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose- and temperature-sensitive nanoparticles for insulin delivery.
    Wu JZ; Williams GR; Li HY; Wang D; Wu H; Li SD; Zhu LM
    Int J Nanomedicine; 2017; 12():4037-4057. PubMed ID: 28603417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycopolypeptide Nanocarriers Based on Dynamic Covalent Bonds for Glucose Dual-Responsiveness and Self-Regulated Release of Insulin in Diabetic Rats.
    Wang Y; Fan Y; Zhang M; Zhou W; Chai Z; Wang H; Sun C; Huang F
    Biomacromolecules; 2020 Apr; 21(4):1507-1515. PubMed ID: 32129603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery.
    Volpatti LR; Matranga MA; Cortinas AB; Delcassian D; Daniel KB; Langer R; Anderson DG
    ACS Nano; 2020 Jan; 14(1):488-497. PubMed ID: 31765558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-responsive hydrogel enhances the preventive effect of insulin and liraglutide on diabetic nephropathy of rats.
    Tong MQ; Luo LZ; Xue PP; Han YH; Wang LF; Zhuge DL; Yao Q; Chen B; Zhao YZ; Xu HL
    Acta Biomater; 2021 Mar; 122():111-132. PubMed ID: 33444802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery.
    Wu JZ; Bremner DH; Li HY; Sun XZ; Zhu LM
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1026-35. PubMed ID: 27612799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylboronate-diol crosslinked glycopolymeric nanocarriers for insulin delivery at physiological pH.
    Guo Q; Wu Z; Zhang X; Sun L; Li C
    Soft Matter; 2014 Feb; 10(6):911-20. PubMed ID: 24835766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin-loaded PLGA microspheres for glucose-responsive release.
    Wu JZ; Williams GR; Li HY; Wang DX; Li SD; Zhu LM
    Drug Deliv; 2017 Nov; 24(1):1513-1525. PubMed ID: 28975813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pH gated, glucose-sensitive nanoparticle based on worm-like mesoporous silica for controlled insulin release.
    Sun L; Zhang X; Zheng C; Wu Z; Li C
    J Phys Chem B; 2013 Apr; 117(14):3852-60. PubMed ID: 23517533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microgel encapsulated nanoparticles for glucose-responsive insulin delivery.
    Volpatti LR; Facklam AL; Cortinas AB; Lu YC; Matranga MA; MacIsaac C; Hill MC; Langer R; Anderson DG
    Biomaterials; 2021 Jan; 267():120458. PubMed ID: 33197650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins.
    Zheng C; Guo Q; Wu Z; Sun L; Zhang Z; Li C; Zhang X
    Eur J Pharm Sci; 2013 Jul; 49(4):474-82. PubMed ID: 23648782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery.
    Zhao F; Wu D; Yao D; Guo R; Wang W; Dong A; Kong D; Zhang J
    Acta Biomater; 2017 Dec; 64():334-345. PubMed ID: 28974477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and optimization of crocetin loaded PLGA nanoparticles against diabetic nephropathy via suppression of inflammatory biomarkers: a formulation approach to preclinical study.
    Yang X
    Drug Deliv; 2019 Dec; 26(1):849-859. PubMed ID: 31524015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Engineered Nanosugar Enables Rapid and Sustained Glucose-Responsive Insulin Delivery in Diabetic Mice.
    Xu R; Bhangu SK; Sourris KC; Vanni D; Sani MA; Karas JA; Alt K; Niego B; Ale A; Besford QA; Dyett B; Patrick J; Carmichael I; Shaw JE; Caruso F; Cooper ME; Hagemeyer CE; Cavalieri F
    Adv Mater; 2023 May; 35(21):e2210392. PubMed ID: 36908046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydatin-loaded chitosan nanoparticles ameliorates early diabetic nephropathy by attenuating oxidative stress and inflammatory responses in streptozotocin-induced diabetic rat.
    Abd El-Hameed AM
    J Diabetes Metab Disord; 2020 Dec; 19(2):1599-1607. PubMed ID: 33520856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anti-inflammation effect of Moutan Cortex on advanced glycation end products-induced rat mesangial cells dysfunction and High-glucose-fat diet and streptozotocin-induced diabetic nephropathy rats.
    Zhang MH; Feng L; Zhu MM; Gu JF; Jiang J; Cheng XD; Ding SM; Wu C; Jia XB
    J Ethnopharmacol; 2014; 151(1):591-600. PubMed ID: 24269777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.