These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34927095)

  • 1. A proximity labeling protocol to probe proximity interactions in
    Sanchez AD; Feldman JL
    STAR Protoc; 2021 Dec; 2(4):100986. PubMed ID: 34927095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling.
    Artan M; Barratt S; Flynn SM; Begum F; Skehel M; Nicolas A; de Bono M
    J Biol Chem; 2021 Sep; 297(3):101094. PubMed ID: 34416233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions.
    Kido K; Yamanaka S; Nakano S; Motani K; Shinohara S; Nozawa A; Kosako H; Ito S; Sawasaki T
    Elife; 2020 May; 9():. PubMed ID: 32391793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A metabolic labeling protocol to enrich myristoylated proteins from
    Gong X; Feng Y; Tang H
    STAR Protoc; 2021 Dec; 2(4):101013. PubMed ID: 34917984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depletion of endogenously biotinylated carboxylases enhances the sensitivity of TurboID-mediated proximity labeling in Caenorhabditis elegans.
    Artan M; Hartl M; Chen W; de Bono M
    J Biol Chem; 2022 Sep; 298(9):102343. PubMed ID: 35933017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping protein networks in yeast mitochondria using proximity-dependent biotin identification coupled to proteomics.
    Salvatori R; Aftab W; Forne I; Imhof A; Ott M; Singh AP
    STAR Protoc; 2020 Dec; 1(3):100219. PubMed ID: 33377112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation.
    May DG; Scott KL; Campos AR; Roux KJ
    Cells; 2020 Apr; 9(5):. PubMed ID: 32344865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large.
    Waaijers S; Muñoz J; Berends C; Ramalho JJ; Goerdayal SS; Low TY; Zoumaro-Djayoon AD; Hoffmann M; Koorman T; Tas RP; Harterink M; Seelk S; Kerver J; Hoogenraad CC; Bossinger O; Tursun B; van den Heuvel S; Heck AJ; Boxem M
    BMC Biol; 2016 Aug; 14():66. PubMed ID: 27506200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A TurboID-based proximity labelling approach for identifying the DNA-binding proteins.
    Wei XF; Li S; Hu JL
    STAR Protoc; 2023 Mar; 4(1):102139. PubMed ID: 36861822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TurboID-Based Proximity Labeling: A Method to Decipher Protein-Protein Interactions in Plants.
    Li Y; Zhang Y; Dinesh-Kumar SP
    Methods Mol Biol; 2024; 2724():257-272. PubMed ID: 37987912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroID2: A Novel Biotin Ligase Enables Rapid Proximity-Dependent Proteomics.
    Johnson BS; Chafin L; Farkas D; Adair J; Elhance A; Farkas L; Bednash JS; Londino JD
    Mol Cell Proteomics; 2022 Jul; 21(7):100256. PubMed ID: 35688383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximity labeling in mammalian cells with TurboID and split-TurboID.
    Cho KF; Branon TC; Udeshi ND; Myers SA; Carr SA; Ting AY
    Nat Protoc; 2020 Dec; 15(12):3971-3999. PubMed ID: 33139955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the interactomes of proteins involved in cytoskeletal dynamics using high-throughput proximity-dependent biotinylation
    Nahlé S; Quirion L; Boulais J; Bagci H; Faubert D; Gingras AC; Côté JF
    STAR Protoc; 2022 Mar; 3(1):101075. PubMed ID: 35036956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximity biotinylation to define the local environment of the protein kinase A catalytic subunit in adrenal cells.
    Omar MH; Lauer SM; Lau HT; Golkowski M; Ong SE; Scott JD
    STAR Protoc; 2023 Mar; 4(1):101992. PubMed ID: 36607814
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Wang X; Li T; Hu J; Feng Z; Zhong R; Nie W; Yang X; Zou Y
    STAR Protoc; 2021 Mar; 2(1):100309. PubMed ID: 33598656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans.
    Hiatt SM; Shyu YJ; Duren HM; Hu CD
    Methods; 2008 Jul; 45(3):185-91. PubMed ID: 18586101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified TurboID approach identifies tissue-specific centriolar components in C. elegans.
    Holzer E; Rumpf-Kienzl C; Falk S; Dammermann A
    PLoS Genet; 2022 Apr; 18(4):e1010150. PubMed ID: 35442950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimized protocol for isolation of S-nitrosylated proteins from
    Seth P; Premont RT; Stamler JS
    STAR Protoc; 2021 Jun; 2(2):100547. PubMed ID: 34095861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient proximity labeling in living cells and organisms with TurboID.
    Branon TC; Bosch JA; Sanchez AD; Udeshi ND; Svinkina T; Carr SA; Feldman JL; Perrimon N; Ting AY
    Nat Biotechnol; 2018 Oct; 36(9):880-887. PubMed ID: 30125270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of TurboID-dependent biotinylation intensity in proximity ligation screens.
    Garloff V; Krüger T; Brakhage A; Rubio I
    J Proteomics; 2023 May; 279():104886. PubMed ID: 36966971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.