These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34927098)

  • 1. Global Run-On sequencing to measure nascent transcription in
    Quarato P; Cecere G
    STAR Protoc; 2021 Dec; 2(4):100991. PubMed ID: 34927098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for affordable and efficient profiling of nascent RNAs in bread wheat using GRO-seq.
    Chen Y; Zhu J; Xie Y; Li Z; Zhang Y; Liu M; Dong Z
    STAR Protoc; 2022 Sep; 3(3):101657. PubMed ID: 36097381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial transcriptomics of the nematode
    Schild ES; Mars J; Ebbing A; Vivié J; Betist M; Korswagen HC
    STAR Protoc; 2021 Jun; 2(2):100411. PubMed ID: 33870220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for nuclear dissociation of the adult C. elegans for single-nucleus RNA sequencing and its application for mapping environmental responses.
    Levenson MT; Barrere-Cain R; Truong L; Chen YW; Shuck K; Panter B; Reich E; Yang X; Allard P
    STAR Protoc; 2023 Dec; 4(4):102756. PubMed ID: 38043054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Run-On sequencing to measure nascent transcription in Saccharomyces cerevisiae.
    O'Brien MJ; Gurdziel K; Ansari A
    Methods; 2023 Sep; 217():18-26. PubMed ID: 37356780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Run-on Sequencing (GRO-Seq).
    Tzerpos P; Daniel B; Nagy L
    Methods Mol Biol; 2021; 2351():25-39. PubMed ID: 34382182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying RNA synthesis at rate-limiting steps of transcription using nascent RNA-sequencing data.
    Rabenius A; Chandrakumaran S; Sistonen L; Vihervaara A
    STAR Protoc; 2022 Mar; 3(1):101036. PubMed ID: 35036951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining pervasive transcription units using chromatin RNA-sequencing data.
    Guo Z; Liu X; Chen M
    STAR Protoc; 2022 Jun; 3(2):101442. PubMed ID: 35693207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Executing cell-specific cross-linking immunoprecipitation and sequencing (seCLIP) in C. elegans.
    Blazie SM; Jin Y
    STAR Protoc; 2023 Mar; 4(1):101959. PubMed ID: 36566382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the nuclear walk-on methodology to determine sites of RNA polymerase II initiation and pausing and quantify nascent RNAs in cells.
    Ball CB; Nilson KA; Price DH
    Methods; 2019 Apr; 159-160():165-176. PubMed ID: 30743000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription.
    Guang S; Bochner AF; Burkhart KB; Burton N; Pavelec DM; Kennedy S
    Nature; 2010 Jun; 465(7301):1097-101. PubMed ID: 20543824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradome sequencing reveals an endogenous microRNA target in C. elegans.
    Park JH; Ahn S; Kim S; Lee J; Nam JW; Shin C
    FEBS Lett; 2013 Apr; 587(7):964-9. PubMed ID: 23485825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans.
    Laing R; Hunt M; Protasio AV; Saunders G; Mungall K; Laing S; Jackson F; Quail M; Beech R; Berriman M; Gilleard JS
    PLoS One; 2011; 6(8):e23216. PubMed ID: 21858033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and Scalable Profiling of Nascent RNA with fastGRO.
    Barbieri E; Hill C; Quesnel-Vallières M; Zucco AJ; Barash Y; Gardini A
    Cell Rep; 2020 Nov; 33(6):108373. PubMed ID: 33176136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GRO-seq, A Tool for Identification of Transcripts Regulating Gene Expression.
    Lopes R; Agami R; Korkmaz G
    Methods Mol Biol; 2017; 1543():45-55. PubMed ID: 28349421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Illuminating Enhancer Transcription at Nucleotide Resolution with Native Elongating Transcript Sequencing (NET-Seq).
    Jasnovidova O; Arnold M; Mayer A
    Methods Mol Biol; 2021; 2351():41-65. PubMed ID: 34382183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of nascent RNA sequencing methods and their applications in studies of cotranscriptional splicing dynamics.
    Liu M; Zhu J; Huang H; Chen Y; Dong Z
    Plant Cell; 2023 Nov; 35(12):4304-4324. PubMed ID: 37708036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic Analysis of C. elegans RNA Sequencing Data Through the Tuxedo Suite on the Galaxy Project.
    Amrit FRG; Ghazi A
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28448031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global Run-On Sequencing (GRO-Seq).
    Gardini A
    Methods Mol Biol; 2017; 1468():111-20. PubMed ID: 27662873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.