BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34927549)

  • 1. Microbial engineering for the production of isobutanol: current status and future directions.
    Lakshmi NM; Binod P; Sindhu R; Awasthi MK; Pandey A
    Bioengineered; 2021 Dec; 12(2):12308-12321. PubMed ID: 34927549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering.
    Promdonkoy P; Mhuantong W; Champreda V; Tanapongpipat S; Runguphan W
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):497-510. PubMed ID: 32430798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes.
    Songdech P; Butkinaree C; Yingchutrakul Y; Promdonkoy P; Runguphan W; Soontorngun N
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38331422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum.
    Lin PP; Mi L; Morioka AH; Yoshino KM; Konishi S; Xu SC; Papanek BA; Riley LA; Guss AM; Liao JC
    Metab Eng; 2015 Sep; 31():44-52. PubMed ID: 26170002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance.
    Matsuda F; Ishii J; Kondo T; Ida K; Tezuka H; Kondo A
    Microb Cell Fact; 2013 Dec; 12():119. PubMed ID: 24305546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced biofuel production by the yeast Saccharomyces cerevisiae.
    Buijs NA; Siewers V; Nielsen J
    Curr Opin Chem Biol; 2013 Jun; 17(3):480-8. PubMed ID: 23628723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae.
    Lee KM; Kim SK; Lee YG; Park KH; Seo JH
    Bioresour Technol; 2018 Nov; 268():271-277. PubMed ID: 30081287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae.
    Su Y; Shao W; Zhang A; Zhang W
    FEMS Yeast Res; 2021 Mar; 21(2):. PubMed ID: 33620449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae.
    Generoso WC; Brinek M; Dietz H; Oreb M; Boles E
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28505306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the valine biosynthetic pathway to convert glucose into isobutanol.
    Savrasova EA; Kivero AD; Shakulov RS; Stoynova NV
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1287-94. PubMed ID: 21161324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast.
    Kuroda K; Hammer SK; Watanabe Y; Montaño López J; Fink GR; Stephanopoulos G; Ueda M; Avalos JL
    Cell Syst; 2019 Dec; 9(6):534-547.e5. PubMed ID: 31734159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis.
    Hammer SK; Avalos JL
    Metab Eng; 2017 Nov; 44():302-312. PubMed ID: 29037781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of microorganisms for the production of higher alcohols.
    Choi YJ; Lee J; Jang YS; Lee SY
    mBio; 2014 Sep; 5(5):e01524-14. PubMed ID: 25182323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frontiers in microbial 1-butanol and isobutanol production.
    Chen CT; Liao JC
    FEMS Microbiol Lett; 2016 Mar; 363(5):fnw020. PubMed ID: 26832641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae.
    Lane S; Zhang Y; Yun EJ; Ziolkowski L; Zhang G; Jin YS; Avalos JL
    Biotechnol Bioeng; 2020 Feb; 117(2):372-381. PubMed ID: 31631318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli.
    Zhou L; Zhu Y; Yuan Z; Liu G; Sun Z; Du S; Liu H; Li Y; Liu H; Zhou Z
    Appl Environ Microbiol; 2022 Sep; 88(17):e0097622. PubMed ID: 35980178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems.
    Zhao T; Tashiro Y; Sonomoto K
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9359-9371. PubMed ID: 31720773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.