These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34927552)

  • 1. Impacts of chloride-form anion exchange seawater regeneration performance.
    Whalen DA; Duranceau SJ
    Environ Technol; 2023 Jun; 44(14):2065-2079. PubMed ID: 34927552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term performance of bicarbonate-form anion exchange: removal of dissolved organic matter and bromide from the St. Johns River, FL, USA.
    Walker KM; Boyer TH
    Water Res; 2011 Apr; 45(9):2875-86. PubMed ID: 21444103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of strong-base anion exchange O&M costs for hexavalent chromium treatment.
    Plummer S; Gorman C; Henrie T; Shimabuku K; Thompson R; Seidel C
    Water Res; 2018 Aug; 139():420-433. PubMed ID: 29709799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and regeneration characteristics of phosphorus from sludge dewatering filtrate by magnetic anion exchange resin.
    Song M; Li M
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34233-34247. PubMed ID: 30617880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioregeneration of sulfate-laden anion exchange resin.
    Virpiranta H; Leiviskä T; Taskila S; Tanskanen J
    Water Res; 2022 Oct; 224():119110. PubMed ID: 36126630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of selected anion exchange resins for the treatment of a high DOC content surface water.
    Humbert H; Gallard H; Suty H; Croué JP
    Water Res; 2005 May; 39(9):1699-708. PubMed ID: 15899268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of kinetic and fixed bed operation of removal of sulfate anions from an industrial wastewater by an anion exchange resin.
    Haghsheno R; Mohebbi A; Hashemipour H; Sarrafi A
    J Hazard Mater; 2009 Jul; 166(2-3):961-6. PubMed ID: 19135783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bicarbonate-form anion exchange: affinity, regeneration, and stoichiometry.
    Rokicki CA; Boyer TH
    Water Res; 2011 Jan; 45(3):1329-37. PubMed ID: 21056451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: Effect of inorganic ions and resin regeneration.
    Dixit F; Barbeau B; Mohseni M
    Chemosphere; 2018 Feb; 192():113-121. PubMed ID: 29100119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of bromide and natural organic matter by anion exchange.
    Hsu S; Singer PC
    Water Res; 2010 Apr; 44(7):2133-40. PubMed ID: 20045170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot-scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anions.
    Boyer TH; Singer PC
    Water Res; 2006 Aug; 40(15):2865-76. PubMed ID: 16844182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluoride removal from groundwater using Zirconium Impregnated Anion Exchange Resin.
    Singh S; German M; Chaudhari S; Sengupta AK
    J Environ Manage; 2020 Jun; 263():110415. PubMed ID: 32883481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving low-cost, highly selective nitrate removal with standard anion exchange resin by tuning recycled brine composition.
    Duan S; Tong T; Zheng S; Zhang X; Li S
    Water Res; 2020 Apr; 173():115571. PubMed ID: 32035280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved brine recycling during nitrate removal using ion exchange.
    Bae BU; Jung YH; Han WW; Shin HS
    Water Res; 2002 Jul; 36(13):3330-40. PubMed ID: 12188132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of bromide from natural waters: Bromide-selective vs. conventional ion exchange resins.
    Soyluoglu M; Ersan MS; Ateia M; Karanfil T
    Chemosphere; 2020 Jan; 238():124583. PubMed ID: 31425865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.
    Awual MR; Hossain MA; Shenashen MA; Yaita T; Suzuki S; Jyo A
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):421-30. PubMed ID: 22562349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.
    Sánchez-Polo M; Rivera-Utrilla J; Salhi E; von Gunten U
    J Colloid Interface Sci; 2006 Aug; 300(1):437-41. PubMed ID: 16696995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination of ion exchange and electrochemical reduction for nitrate removal from drinking water. Part I: nitrate removal using a selective anion exchanger in the bicarbonate form with reuse of the regenerant solution.
    Jelínek L; Parschová H; Matejka Z; Paidar M; Bouzek K
    Water Environ Res; 2004; 76(7):2686-90. PubMed ID: 16042116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of perchlorate (ClO4-)-loaded anion exchange resins by a novel tetrachloroferrate (FeCl4-) displacement technique.
    Gu B; Brown GM; Maya L; Lance MJ; Moyer BA
    Environ Sci Technol; 2001 Aug; 35(16):3363-8. PubMed ID: 11529578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells.
    Dalmark M; Wieth JO
    J Physiol; 1972 Aug; 224(3):583-610. PubMed ID: 5071931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.