These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 34927643)
21. Exploring stereochemical specificity of phosphotriesterase by MM-PBSA and MM-GBSA calculation and steered molecular dynamics simulation. Zhu J; Li X; Zhang S; Ye H; Zhao H; Jin H; Han W J Biomol Struct Dyn; 2017 Nov; 35(14):3140-3151. PubMed ID: 27691783 [TBL] [Abstract][Full Text] [Related]
22. Protonation of the binuclear metal center within the active site of phosphotriesterase. Samples CR; Howard T; Raushel FM; DeRose VJ Biochemistry; 2005 Aug; 44(33):11005-13. PubMed ID: 16101284 [TBL] [Abstract][Full Text] [Related]
23. Structure of diethyl phosphate bound to the binuclear metal center of phosphotriesterase. Kim J; Tsai PC; Chen SL; Himo F; Almo SC; Raushel FM Biochemistry; 2008 Sep; 47(36):9497-504. PubMed ID: 18702530 [TBL] [Abstract][Full Text] [Related]
24. Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents. Tsai PC; Fox N; Bigley AN; Harvey SP; Barondeau DP; Raushel FM Biochemistry; 2012 Aug; 51(32):6463-75. PubMed ID: 22809162 [TBL] [Abstract][Full Text] [Related]
25. Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes. Samples CR; Raushel FM; DeRose VJ Biochemistry; 2007 Mar; 46(11):3435-42. PubMed ID: 17315951 [TBL] [Abstract][Full Text] [Related]
26. Overcoming the Challenges of Enzyme Evolution To Adapt Phosphotriesterase for V-Agent Decontamination. Bigley AN; Desormeaux E; Xiang DF; Bae SY; Harvey SP; Raushel FM Biochemistry; 2019 Apr; 58(15):2039-2053. PubMed ID: 30893549 [TBL] [Abstract][Full Text] [Related]
27. Trimethylphosphate and Dimethylphosphate Hydrolysis by Binuclear Cd Pinto G; Mazzone G; Russo N; Toscano M Chemistry; 2017 Oct; 23(55):13742-13753. PubMed ID: 28661038 [TBL] [Abstract][Full Text] [Related]
28. Substitution of the catalytic metal and protein PEGylation enhances activity and stability of bacterial phosphotriesterase. Perezgasga L; Sánchez-Sánchez L; Aguila S; Vazquez-Duhalt R Appl Biochem Biotechnol; 2012 Mar; 166(5):1236-47. PubMed ID: 22249853 [TBL] [Abstract][Full Text] [Related]
29. Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis. Bigley AN; Xu C; Henderson TJ; Harvey SP; Raushel FM J Am Chem Soc; 2013 Jul; 135(28):10426-32. PubMed ID: 23789980 [TBL] [Abstract][Full Text] [Related]
30. Phosphotriesterase variants with high methylphosphonatase activity and strong negative trade-off against phosphotriesters. Briseño-Roa L; Timperley CM; Griffiths AD; Fersht AR Protein Eng Des Sel; 2011 Jan; 24(1-2):151-9. PubMed ID: 21037279 [TBL] [Abstract][Full Text] [Related]
31. Stereoselectivity of phosphotriesterase with paraoxon derivatives: a computational study. Zhan D; Guan S; Jin H; Han W; Wang S J Biomol Struct Dyn; 2016; 34(3):600-11. PubMed ID: 25929154 [TBL] [Abstract][Full Text] [Related]
32. Hydrolysis of phosphotriesters: a theoretical analysis of the enzymatic and solution mechanisms. López-Canut V; Ruiz-Pernía JJ; Castillo R; Moliner V; Tuñón I Chemistry; 2012 Jul; 18(31):9612-21. PubMed ID: 22745111 [TBL] [Abstract][Full Text] [Related]
33. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans. Hawwa R; Larsen SD; Ratia K; Mesecar AD J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223 [TBL] [Abstract][Full Text] [Related]
34. Hydrolysis of DFP and the nerve agent (S)-sarin by DFPase proceeds along two different reaction pathways: implications for engineering bioscavengers. Wymore T; Field MJ; Langan P; Smith JC; Parks JM J Phys Chem B; 2014 May; 118(17):4479-89. PubMed ID: 24720808 [TBL] [Abstract][Full Text] [Related]
35. The effects of substrate orientation on the mechanism of a phosphotriesterase. Jackson CJ; Liu JW; Coote ML; Ollis DL Org Biomol Chem; 2005 Dec; 3(24):4343-50. PubMed ID: 16327895 [TBL] [Abstract][Full Text] [Related]
36. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. McLoughlin SY; Jackson C; Liu JW; Ollis DL Appl Environ Microbiol; 2004 Jan; 70(1):404-12. PubMed ID: 14711669 [TBL] [Abstract][Full Text] [Related]
37. Binding of a designed substrate analogue to diisopropyl fluorophosphatase: implications for the phosphotriesterase mechanism. Blum MM; Löhr F; Richardt A; Rüterjans H; Chen JC J Am Chem Soc; 2006 Oct; 128(39):12750-7. PubMed ID: 17002369 [TBL] [Abstract][Full Text] [Related]
38. The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis. Ely F; Hadler KS; Gahan LR; Guddat LW; Ollis DL; Schenk G Biochem J; 2010 Dec; 432(3):565-73. PubMed ID: 20868365 [TBL] [Abstract][Full Text] [Related]
39. Preparation of efficient, stable, and reusable copper-phosphotriesterase hybrid nanoflowers for biodegradation of organophosphorus pesticides. Chen J; Guo Z; Xin Y; Shi Y; Li Y; Gu Z; Zhong J; Guo X; Zhang L Enzyme Microb Technol; 2021 May; 146():109766. PubMed ID: 33812563 [TBL] [Abstract][Full Text] [Related]
40. Gas-phase mechanisms of degradation of hazardous organophosphorus compounds: do they follow a common pattern of alkaline hydrolysis reaction as in phosphotriesterase? Dyguda-Kazimierowicz E; Sokalski WA; Leszczynski J J Phys Chem B; 2008 Aug; 112(32):9982-91. PubMed ID: 18630959 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]