BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34927697)

  • 1. Integrated Omic Analyses Identify Pathways and Transcriptomic Regulators Associated With Chemical Alterations of In Vitro Neural Network Formation.
    Marable CA; Frank CL; Seim RF; Hester S; Henderson WM; Chorley B; Shafer TJ
    Toxicol Sci; 2022 Feb; 186(1):118-133. PubMed ID: 34927697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From the Cover: Developmental Neurotoxicants Disrupt Activity in Cortical Networks on Microelectrode Arrays: Results of Screening 86 Compounds During Neural Network Formation.
    Frank CL; Brown JP; Wallace K; Mundy WR; Shafer TJ
    Toxicol Sci; 2017 Nov; 160(1):121-135. PubMed ID: 28973552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies.
    Chen H; Chidboy MA; Robinson JF
    Reprod Toxicol; 2020 Sep; 96():102-113. PubMed ID: 32544423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Chemical Effects on Network Formation in Cortical Neurons Grown on Microelectrode Arrays.
    Shafer TJ; Brown JP; Lynch B; Davila-Montero S; Wallace K; Friedman KP
    Toxicol Sci; 2019 Jun; 169(2):436-455. PubMed ID: 30816951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human iPSC-based in vitro neural network formation assay to investigate neurodevelopmental toxicity of pesticides.
    Bartmann K; Bendt F; Dönmez A; Haag D; Keßel HE; Masjosthusmann S; Noel C; Wu J; Zhou P; Fritsche E
    ALTEX; 2023; 40(3):452-470. PubMed ID: 37158368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Editor's Highlight: Evaluation of a Microelectrode Array-Based Assay for Neural Network Ontogeny Using Training Set Chemicals.
    Brown JP; Hall D; Frank CL; Wallace K; Mundy WR; Shafer TJ
    Toxicol Sci; 2016 Nov; 154(1):126-139. PubMed ID: 27492221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays.
    Sachana M; Willett C; Pistollato F; Bal-Price A
    Reprod Toxicol; 2021 Aug; 103():159-170. PubMed ID: 34147625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro.
    Klose J; Li L; Pahl M; Bendt F; Hübenthal U; Jüngst C; Petzsch P; Schauss A; Köhrer K; Leung PC; Wang CC; Koch K; Tigges J; Fan X; Fritsche E
    Cell Biol Toxicol; 2023 Feb; 39(1):319-343. PubMed ID: 35701726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical effects on neural network activity: Comparison of acute versus network formation exposure in microelectrode array assays.
    Martin MM; Carpenter AF; Shafer TJ; Paul Friedman K; Carstens KE
    Toxicology; 2024 Jun; 505():153842. PubMed ID: 38788893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration-response evaluation of ToxCast compounds for multivariate activity patterns of neural network function.
    Kosnik MB; Strickland JD; Marvel SW; Wallis DJ; Wallace K; Richard AM; Reif DM; Shafer TJ
    Arch Toxicol; 2020 Feb; 94(2):469-484. PubMed ID: 31822930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation and validation of 30 neural mRNA biomarkers for estimation of developmental neurotoxicity.
    Attoff K; Gliga A; Lundqvist J; Norinder U; Forsby A
    PLoS One; 2017; 12(12):e0190066. PubMed ID: 29261810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons.
    Hogberg HT; Sobanski T; Novellino A; Whelan M; Weiss DG; Bal-Price AK
    Neurotoxicology; 2011 Jan; 32(1):158-68. PubMed ID: 21056592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts.
    van Thriel C; Westerink RH; Beste C; Bale AS; Lein PJ; Leist M
    Neurotoxicology; 2012 Aug; 33(4):911-24. PubMed ID: 22008243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering key regulators involved in epilepsy-induced cardiac damage through whole transcriptome and proteome analysis in a rat model.
    Sharma S; Sharma M; Rana AK; Joshi R; Swarnkar MK; Acharya V; Singh D
    Epilepsia; 2021 Feb; 62(2):504-516. PubMed ID: 33341939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated metabolomic and transcriptomic analysis reveals perturbed glycerophospholipid metabolism in mouse neural stem cells exposed to cadmium.
    Li Y; Zhang J; Zhang Y; Zhang B; Wang Z; Wu C; Zhou Z; Chang X
    Ecotoxicol Environ Saf; 2023 Oct; 264():115411. PubMed ID: 37660531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+).
    Krug AK; Gutbier S; Zhao L; Pöltl D; Kullmann C; Ivanova V; Förster S; Jagtap S; Meiser J; Leparc G; Schildknecht S; Adam M; Hiller K; Farhan H; Brunner T; Hartung T; Sachinidis A; Leist M
    Cell Death Dis; 2014 May; 5(5):e1222. PubMed ID: 24810058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network.
    Spînu N; Cronin MTD; Lao J; Bal-Price A; Campia I; Enoch SJ; Madden JC; Mora Lagares L; Novič M; Pamies D; Scholz S; Villeneuve DL; Worth AP
    Comput Toxicol; 2022 Feb; 21():100206. PubMed ID: 35211661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: the case of sodium valproate.
    Smirnova L; Block K; Sittka A; Oelgeschläger M; Seiler AE; Luch A
    PLoS One; 2014; 9(6):e98892. PubMed ID: 24896083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotenone exerts developmental neurotoxicity in a human brain spheroid model.
    Pamies D; Block K; Lau P; Gribaldo L; Pardo CA; Barreras P; Smirnova L; Wiersma D; Zhao L; Harris G; Hartung T; Hogberg HT
    Toxicol Appl Pharmacol; 2018 Sep; 354():101-114. PubMed ID: 29428530
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.