These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34927742)

  • 1. The use of autorefractors using the image-size principle in determining on-axis and off-axis refraction. Part 1: Analysis of optical principles of autorefractors.
    Campbell CE; Suheimat M; Zacharovas S; Atchison DA
    Ophthalmic Physiol Opt; 2022 Mar; 42(2):283-292. PubMed ID: 34927742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of autorefractors using the image-size principle in determining on-axis and off-axis refraction. Part 2: Theoretical study of peripheral refraction with the Grand Seiko AutoRef/Keratometer WAM-5500.
    Atchison DA; Suheimat M; Zacharovas S; Campbell CE
    Ophthalmic Physiol Opt; 2022 Mar; 42(2):293-300. PubMed ID: 34927744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of autorefractors using the image-size principle in determining on-axis and off-axis refraction. Part 3: Theoretical effect of pupil misalignment on peripheral refraction for the Grand-Seiko Autorefractor.
    Atchison DA
    Ophthalmic Physiol Opt; 2022 May; 42(3):653-657. PubMed ID: 35179800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical notes on peripheral refraction, peripheral eye length and retinal shape determination.
    Atchison DA; Rozema JJ
    Ophthalmic Physiol Opt; 2023 May; 43(3):584-594. PubMed ID: 36700482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of peripheral refraction techniques.
    Fedtke C; Ehrmann K; Holden BA
    Optom Vis Sci; 2009 May; 86(5):429-46. PubMed ID: 19342977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the Accuracy and Repeatability of Refractive Error Estimates Depend on the Measurement Principle of Autorefractors?
    Padhy D; Bharadwaj SR; Nayak S; Rath S; Das T
    Transl Vis Sci Technol; 2021 Jan; 10(1):2. PubMed ID: 33505769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of spherical equivalent refraction and astigmatism measured with three different models of autorefractors.
    Gwiazda J; Weber C
    Optom Vis Sci; 2004 Jan; 81(1):56-61. PubMed ID: 14747762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phakic intraocular lenses for the treatment of refractive errors: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2009; 9(14):1-120. PubMed ID: 23074518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of autorefraction in an adult Indian population.
    Kumar RS; Moe CA; Kumar D; Rackenchath MV; A V SD; Nagaraj S; Wittberg DM; Stamper RL; Keenan JD
    PLoS One; 2021; 16(5):e0251583. PubMed ID: 34010350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of six different autorefractor designs on the precision and accuracy of refractive error measurement.
    Venkataraman AP; Brautaset R; Domínguez-Vicent A
    PLoS One; 2022; 17(11):e0278269. PubMed ID: 36441778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of refraction--a literature review.
    Goss DA; Grosvenor T
    J Am Optom Assoc; 1996 Oct; 67(10):619-30. PubMed ID: 8942135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic measurement errors involved in over-refraction using an autorefractor (Grand-Seiko WV-500): is measurement of accommodative lag through spectacle lenses valid?
    Kimura S; Hasebe S; Ohtsuki H
    Ophthalmic Physiol Opt; 2007 May; 27(3):281-6. PubMed ID: 17470241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus.
    Benavente-Pérez A; Nour A; Troilo D
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6765-73. PubMed ID: 25190657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection system for ocular refractive error measurement.
    Ventura L; de Faria e Sousa SJ; de Castro JC
    Phys Med Biol; 1998 May; 43(5):1303-16. PubMed ID: 9623657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imposed retinal image size changes--do they provide a cue to the sign of lens-induced defocus in chick?
    Schmid KL; Strang NC; Wildsoet CF
    Optom Vis Sci; 1999 May; 76(5):320-5. PubMed ID: 10375249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral refraction in myopia corrected with spectacles versus contact lenses.
    Backhouse S; Fox S; Ibrahim B; Phillips JR
    Ophthalmic Physiol Opt; 2012 Jul; 32(4):294-303. PubMed ID: 22577970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eye shape and retinal shape, and their relation to peripheral refraction.
    Verkicharla PK; Mathur A; Mallen EA; Pope JM; Atchison DA
    Ophthalmic Physiol Opt; 2012 May; 32(3):184-99. PubMed ID: 22486366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of instrument alignment on peripheral refraction measurements by automated optometer.
    Ehsaei A; Chisholm CM; Mallen EA; Pacey IE
    Ophthalmic Physiol Opt; 2011 Jul; 31(4):413-20. PubMed ID: 21539591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral refraction with and without contact lens correction.
    Shen J; Clark CA; Soni PS; Thibos LN
    Optom Vis Sci; 2010 Sep; 87(9):642-55. PubMed ID: 20601913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodation stimulus and response determinations with autorefractors.
    Atchison DA; Varnas SR
    Ophthalmic Physiol Opt; 2017 Jan; 37(1):96-104. PubMed ID: 28030883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.