BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34927744)

  • 1. The use of autorefractors using the image-size principle in determining on-axis and off-axis refraction. Part 2: Theoretical study of peripheral refraction with the Grand Seiko AutoRef/Keratometer WAM-5500.
    Atchison DA; Suheimat M; Zacharovas S; Campbell CE
    Ophthalmic Physiol Opt; 2022 Mar; 42(2):293-300. PubMed ID: 34927744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of autorefractors using the image-size principle in determining on-axis and off-axis refraction. Part 3: Theoretical effect of pupil misalignment on peripheral refraction for the Grand-Seiko Autorefractor.
    Atchison DA
    Ophthalmic Physiol Opt; 2022 May; 42(3):653-657. PubMed ID: 35179800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of autorefractors using the image-size principle in determining on-axis and off-axis refraction. Part 1: Analysis of optical principles of autorefractors.
    Campbell CE; Suheimat M; Zacharovas S; Atchison DA
    Ophthalmic Physiol Opt; 2022 Mar; 42(2):283-292. PubMed ID: 34927742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of spherical equivalent refraction and astigmatism measured with three different models of autorefractors.
    Gwiazda J; Weber C
    Optom Vis Sci; 2004 Jan; 81(1):56-61. PubMed ID: 14747762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of eye rotation and contact lens decentration on horizontal peripheral refraction.
    Jaisankar D; Leube A; Gifford KL; Schmid KL; Atchison DA
    Ophthalmic Physiol Opt; 2019 Sep; 39(5):370-377. PubMed ID: 31482609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500.
    Sheppard AL; Davies LN
    Ophthalmic Physiol Opt; 2010 Mar; 30(2):143-51. PubMed ID: 20444118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of cycloplegic refraction between Grand Seiko autorefractor and Retinomax autorefractor in the Vision in Preschoolers-Hyperopia in Preschoolers (VIP-HIP) Study.
    Ying GS; Maguire MG; Kulp MT; Ciner E; Moore B; Pistilli M; Candy R;
    J AAPOS; 2017 Jun; 21(3):219-223.e3. PubMed ID: 28528993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral Refraction Validity of the Shin-Nippon SRW5000 Autorefractor.
    Osuagwu UL; Suheimat M; Wolffsohn JS; Atchison DA
    Optom Vis Sci; 2016 Oct; 93(10):1254-61. PubMed ID: 27536977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto-refractor.
    Altoaimi BH; Kollbaum P; Meyer D; Bradley A
    Ophthalmic Physiol Opt; 2018 Mar; 38(2):152-163. PubMed ID: 29315718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeatability and Validity of Peripheral Refraction with Two Different Autorefractors.
    Morrison AM; Mutti DO
    Optom Vis Sci; 2020 Jun; 97(6):429-439. PubMed ID: 32511165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open versus closed view autorefraction in young adults.
    Nagra M; Akhtar A; Huntjens B; Campbell P
    J Optom; 2021; 14(1):86-91. PubMed ID: 32792330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of aberrometry-based relative peripheral refraction measurements.
    Berntsen DA; Mutti DO; Zadnik K
    Ophthalmic Physiol Opt; 2008 Jan; 28(1):83-90. PubMed ID: 18201339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of refractive value and pupil size under monocular and binocular conditions between the Spot Vision Screener and binocular open-field autorefractor.
    Satou T; Takahashi Y; Niida T
    Strabismus; 2020 Dec; 28(4):186-193. PubMed ID: 33063575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic measurement errors involved in over-refraction using an autorefractor (Grand-Seiko WV-500): is measurement of accommodative lag through spectacle lenses valid?
    Kimura S; Hasebe S; Ohtsuki H
    Ophthalmic Physiol Opt; 2007 May; 27(3):281-6. PubMed ID: 17470241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accommodation stimulus and response determinations with autorefractors.
    Atchison DA; Varnas SR
    Ophthalmic Physiol Opt; 2017 Jan; 37(1):96-104. PubMed ID: 28030883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Study of Refraction Effects of Nominally Plano Ophthalmic Prisms and Magnifying Lenses.
    Atchison DA; Lu J; Yip C; Suheimat M; Schmid KL
    Optom Vis Sci; 2019 Feb; 96(2):111-116. PubMed ID: 30589764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central and peripheral autorefraction repeatability in normal eyes.
    Moore KE; Berntsen DA
    Optom Vis Sci; 2014 Sep; 91(9):1106-12. PubMed ID: 25062133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensation of corneal oblique astigmatism by internal optics: a theoretical analysis.
    Liu T; Thibos LN
    Ophthalmic Physiol Opt; 2017 May; 37(3):305-316. PubMed ID: 28281302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of peripheral refractions determined by different instruments.
    Atchison DA
    Optom Vis Sci; 2003 Sep; 80(9):655-60. PubMed ID: 14502047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between two autorefractor performances in large scale vision screening in Chinese school age children.
    Wang D; Jin N; Pei RX; Zhao LQ; Du B; Liu GH; Wang XL; Wei RH; Li XR
    Int J Ophthalmol; 2020; 13(10):1660-1666. PubMed ID: 33078119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.