BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34927798)

  • 1. In vitro and in vivo drug screens of tumor cells identify novel therapies for high-risk child cancer.
    Lau LMS; Mayoh C; Xie J; Barahona P; MacKenzie KL; Wong M; Kamili A; Tsoli M; Failes TW; Kumar A; Mould EVA; Gifford A; Chow SO; Pinese M; Fletcher JI; Arndt GM; Khuong-Quang DA; Wadham C; Batey D; Eden G; Trebilcock P; Joshi S; Alfred S; Gopalakrishnan A; Khan A; Grebert Wade D; Strong PA; Manouvrier E; Morgan LT; Span M; Lim JY; Cadiz R; Ung C; Thomas DM; Tucker KM; Warby M; McCowage GB; Dalla-Pozza L; Byrne JA; Saletta F; Fellowes A; Fox SB; Norris MD; Tyrrell V; Trahair TN; Lock RB; Cowley MJ; Ekert PG; Haber M; Ziegler DS; Marshall GM
    EMBO Mol Med; 2022 Apr; 14(4):e14608. PubMed ID: 34927798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of genomics, high throughput drug screening, and personalized xenograft models as a novel precision medicine paradigm for high risk pediatric cancer.
    Tsoli M; Wadham C; Pinese M; Failes T; Joshi S; Mould E; Yin JX; Gayevskiy V; Kumar A; Kaplan W; Ekert PG; Saletta F; Franshaw L; Liu J; Gifford A; Weber MA; Rodriguez M; Cohn RJ; Arndt G; Tyrrell V; Haber M; Trahair T; Marshall GM; McDonald K; Cowley MJ; Ziegler DS
    Cancer Biol Ther; 2018; 19(12):1078-1087. PubMed ID: 30299205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Drug Screening of Primary Tumor Cells Identifies Therapeutic Strategies for Treating Children with High-Risk Cancer.
    Mayoh C; Mao J; Xie J; Tax G; Chow SO; Cadiz R; Pazaky K; Barahona P; Ajuyah P; Trebilcock P; Malquori A; Gunther K; Avila A; Yun DY; Alfred S; Gopalakrishnan A; Kamili A; Wong M; Cowley MJ; Jessop S; Lau LMS; Trahair TN; Ziegler DS; Fletcher JI; Gifford AJ; Tsoli M; Marshall GM; Haber M; Tyrrell V; Failes TW; Arndt GM; Lock RB; Ekert PG; Dolman MEM
    Cancer Res; 2023 Aug; 83(16):2716-2732. PubMed ID: 37523146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalized
    Pauli C; Hopkins BD; Prandi D; Shaw R; Fedrizzi T; Sboner A; Sailer V; Augello M; Puca L; Rosati R; McNary TJ; Churakova Y; Cheung C; Triscott J; Pisapia D; Rao R; Mosquera JM; Robinson B; Faltas BM; Emerling BE; Gadi VK; Bernard B; Elemento O; Beltran H; Demichelis F; Kemp CJ; Grandori C; Cantley LC; Rubin MA
    Cancer Discov; 2017 May; 7(5):462-477. PubMed ID: 28331002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Precision Medicine Drug Discovery Pipeline Identifies Combined CDK2 and 9 Inhibition as a Novel Therapeutic Strategy in Colorectal Cancer.
    Somarelli JA; Roghani RS; Moghaddam AS; Thomas BC; Rupprecht G; Ware KE; Altunel E; Mantyh JB; Kim SY; McCall SJ; Shen X; Mantyh CR; Hsu DS
    Mol Cancer Ther; 2020 Dec; 19(12):2516-2527. PubMed ID: 33158998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New tools for old drugs: Functional genetic screens to optimize current chemotherapy.
    Gerhards NM; Rottenberg S
    Drug Resist Updat; 2018 Jan; 36():30-46. PubMed ID: 29499836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.
    Daher A; de Groot J
    Exp Neurol; 2018 Jan; 299(Pt B):281-288. PubMed ID: 28923369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine.
    Rivera M; Fichtner I; Wulf-Goldenberg A; Sers C; Merk J; Patone G; Alp KM; Kanashova T; Mertins P; Hoffmann J; Stein U; Walther W
    Neoplasia; 2021 Jan; 23(1):21-35. PubMed ID: 33212364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision medicine approaches to lung adenocarcinoma with concomitant MET and HER2 amplification.
    Oh DY; Jung K; Song JY; Kim S; Shin S; Kwon YJ; Oh E; Park WY; Song SY; Choi YL
    BMC Cancer; 2017 Aug; 17(1):535. PubMed ID: 28806950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinically relevant inflammatory breast cancer patient-derived xenograft-derived ex vivo model for evaluation of tumor-specific therapies.
    Eckhardt BL; Gagliardi M; Iles L; Evans K; Ivan C; Liu X; Liu CG; Souza G; Rao A; Meric-Bernstam F; Ueno NT; Bartholomeusz GA
    PLoS One; 2018; 13(5):e0195932. PubMed ID: 29768500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCAT: an integrated portal for genomic and preclinical testing data of pediatric cancer patient-derived xenograft models.
    Yang J; Li Q; Noureen N; Fang Y; Kurmasheva R; Houghton PJ; Wang X; Zheng S
    Nucleic Acids Res; 2021 Jan; 49(D1):D1321-D1327. PubMed ID: 32810235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individualized drug screening based on next generation sequencing and patient derived xenograft model for pancreatic cancer with bone metastasis.
    Guan Z; Lan H; Chen X; Jiang X; Wang X; Jin K
    Mol Med Rep; 2017 Oct; 16(4):4784-4790. PubMed ID: 28849200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pancreas Cancer Precision Treatment Using Avatar Mice from a Bioinformatics Perspective.
    Perales-Patón J; Piñeiro-Yañez E; Tejero H; López-Casas PP; Hidalgo M; Gómez-López G; Al-Shahrour F
    Public Health Genomics; 2017; 20(2):81-91. PubMed ID: 28858862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteosarcoma Patient-derived Orthotopic Xenograft (PDOX) Models Used to Identify Novel and Effective Therapeutics: A Review.
    Higuchi T; Igarashi K; Yamamoto N; Hayashi K; Kimura H; Miwa S; Bouvet M; Tsuchiya H; Hoffman RM
    Anticancer Res; 2021 Dec; 41(12):5865-5871. PubMed ID: 34848441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of zebrafish patient-derived xenograft tumor models in the development of antitumor agents.
    Li X; Li M
    Med Res Rev; 2023 Jan; 43(1):212-236. PubMed ID: 36029178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of patient-derived liver cancer cells for phenotypic characterization and therapeutic target identification.
    Castven D; Becker D; Czauderna C; Wilhelm D; Andersen JB; Strand S; Hartmann M; Heilmann-Heimbach S; Roth W; Hartmann N; Straub BK; Mahn FL; Franck S; Pereira S; Haupts A; Vogel A; Wörns MA; Weinmann A; Heinrich S; Lang H; Thorgeirsson SS; Galle PR; Marquardt JU
    Int J Cancer; 2019 Jun; 144(11):2782-2794. PubMed ID: 30485423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of drug responses of mini patient-derived xenografts in mice for predicting cancer patient clinical therapeutic response.
    Zhang F; Wang W; Long Y; Liu H; Cheng J; Guo L; Li R; Meng C; Yu S; Zhao Q; Lu S; Wang L; Wang H; Wen D
    Cancer Commun (Lond); 2018 Sep; 38(1):60. PubMed ID: 30257718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and application of patient-derived xenograft models in pancreatic cancer research.
    Wang CF; Shi XJ
    Chin Med J (Engl); 2019 Nov; 132(22):2729-2736. PubMed ID: 31725451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of patient-derived tumor xenograft models and tumor organoids.
    Yoshida GJ
    J Hematol Oncol; 2020 Jan; 13(1):4. PubMed ID: 31910904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MD Anderson Prostate Cancer Patient-derived Xenograft Series (MDA PCa PDX) Captures the Molecular Landscape of Prostate Cancer and Facilitates Marker-driven Therapy Development.
    Palanisamy N; Yang J; Shepherd PDA; Li-Ning-Tapia EM; Labanca E; Manyam GC; Ravoori MK; Kundra V; Araujo JC; Efstathiou E; Pisters LL; Wan X; Wang X; Vazquez ES; Aparicio AM; Carskadon SL; Tomlins SA; Kunju LP; Chinnaiyan AM; Broom BM; Logothetis CJ; Troncoso P; Navone NM
    Clin Cancer Res; 2020 Sep; 26(18):4933-4946. PubMed ID: 32576626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.