These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 34927830)
1. Reducing Open-Circuit Voltage Deficit in Perovskite Solar Cells via Surface Passivation with Phenylhydroxylammonium Halide Salts. Yi X; Mao Y; Zhang L; Zhuang J; Zhang Y; Chen N; Lin T; Wei Y; Wang F; Wang J; Li C Small Methods; 2021 Mar; 5(3):e2000441. PubMed ID: 34927830 [TBL] [Abstract][Full Text] [Related]
2. Highly Efficient and Stable GABr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small V Zhou X; Zhang L; Wang X; Liu C; Chen S; Zhang M; Li X; Yi W; Xu B Adv Mater; 2020 Apr; 32(14):e1908107. PubMed ID: 32100401 [TBL] [Abstract][Full Text] [Related]
3. Homologous Bromides Treatment for Improving the Open-Circuit Voltage of Perovskite Solar Cells. Li Y; Xu W; Mussakhanuly N; Cho Y; Bing J; Zheng J; Tang S; Liu Y; Shi G; Liu Z; Zhang Q; Durrant JR; Ma W; Ho-Baillie AWY; Huang S Adv Mater; 2022 Feb; 34(6):e2106280. PubMed ID: 34741474 [TBL] [Abstract][Full Text] [Related]
4. Wide-Bandgap Perovskite Solar Cell Using a Fluoride-Assisted Surface Gradient Passivation Strategy. Yan N; Gao Y; Yang J; Fang Z; Feng J; Wu X; Chen T; Liu SF Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202216668. PubMed ID: 36593561 [TBL] [Abstract][Full Text] [Related]
5. Pure 2D Perovskite Formation by Interfacial Engineering Yields a High Open-Circuit Voltage beyond 1.28 V for 1.77-eV Wide-Bandgap Perovskite Solar Cells. He R; Yi Z; Luo Y; Luo J; Wei Q; Lai H; Huang H; Zou B; Cui G; Wang W; Xiao C; Ren S; Chen C; Wang C; Xing G; Fu F; Zhao D Adv Sci (Weinh); 2022 Dec; 9(36):e2203210. PubMed ID: 36372551 [TBL] [Abstract][Full Text] [Related]
6. Reduced V Chen W; Huang Y; Cui H; Li S; Feng Y; Zhang B Small Methods; 2023 Mar; 7(3):e2201276. PubMed ID: 36717279 [TBL] [Abstract][Full Text] [Related]
7. Potassium tetrafluoroborate-induced defect tolerance enables efficient wide-bandgap perovskite solar cells. Yu Y; Liu R; Zhang F; Liu C; Wu Q; Zhang M; Yu H J Colloid Interface Sci; 2022 Jan; 605():710-717. PubMed ID: 34365307 [TBL] [Abstract][Full Text] [Related]
8. Effective Interface Defect Passivation via Employing 1-Methylbenzimidazole for Highly Efficient and Stable Perovskite Solar Cells. Zheng H; Liu G; Wu W; Xu H; Pan X ChemSusChem; 2021 Aug; 14(15):3147-3154. PubMed ID: 34132063 [TBL] [Abstract][Full Text] [Related]
9. Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers. Chen B; Chen H; Hou Y; Xu J; Teale S; Bertens K; Chen H; Proppe A; Zhou Q; Yu D; Xu K; Vafaie M; Liu Y; Dong Y; Jung EH; Zheng C; Zhu T; Ning Z; Sargent EH Adv Mater; 2021 Oct; 33(41):e2103394. PubMed ID: 34425038 [TBL] [Abstract][Full Text] [Related]
10. Efficient and Stable Perovskite Solar Cells with a High Open-Circuit Voltage Over 1.2 V Achieved by a Dual-Side Passivation Layer. Kim JH; Kim YR; Kim J; Oh CM; Hwang IW; Kim J; Zeiske S; Ki T; Kwon S; Kim H; Armin A; Suh H; Lee K Adv Mater; 2022 Oct; 34(41):e2205268. PubMed ID: 36030364 [TBL] [Abstract][Full Text] [Related]
11. Decreased surface defects and non-radiative recombination Kara DA; Cirak D; Gultekin B Phys Chem Chem Phys; 2022 May; 24(17):10384-10393. PubMed ID: 35438697 [TBL] [Abstract][Full Text] [Related]
12. Methylammonium halide salt interfacial modification of perovskite quantum dots/triple-cation perovskites enable efficient solar cells. Tien CH; Lai HY; Chen LC Sci Rep; 2023 Apr; 13(1):5387. PubMed ID: 37012304 [TBL] [Abstract][Full Text] [Related]
13. Strain Regulation of Mixed-Halide Perovskites Enables High-Performance Wide-Bandgap Photovoltaics. Li X; Li Y; Feng Y; Qi J; Shen J; Shi G; Yang S; Yuan M; He T Adv Mater; 2024 Jun; 36(23):e2401103. PubMed ID: 38375740 [TBL] [Abstract][Full Text] [Related]
14. Additive engineering for efficient wide-bandgap perovskite solar cells with low open-circuit voltage losses. Yu X; He H; Hui Y; Wang H; Zhu X; Li S; Zhu T Front Chem; 2024; 12():1441057. PubMed ID: 39286002 [TBL] [Abstract][Full Text] [Related]
15. Passivation of Sodium Benzenesulfonate at the Buried Interface of a High-Performance Wide-Bandgap Perovskite Solar Cell. La S; Mo Y; Li X; Feng X; Chen X; Li Z; Yang M; Ren D; Liu S; Cui X; Chen J; Zhang Z; Yuan Z; Cai M Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612047 [TBL] [Abstract][Full Text] [Related]
16. Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. Yang S; Dai J; Yu Z; Shao Y; Zhou Y; Xiao X; Zeng XC; Huang J J Am Chem Soc; 2019 Apr; 141(14):5781-5787. PubMed ID: 30888171 [TBL] [Abstract][Full Text] [Related]
17. Suppressing Phase Segregation in Wide Bandgap Perovskites for Monolithic Perovskite/Organic Tandem Solar Cells with Reduced Voltage Loss. Wang C; Shao W; Liang J; Chen C; Hu X; Cui H; Liu C; Fang G; Tao C Small; 2022 Dec; 18(49):e2204081. PubMed ID: 36310130 [TBL] [Abstract][Full Text] [Related]
18. Synergistic Ion-Anchoring Passivation for Perovskite Solar Cells with Efficiency Exceeding 24% and Ultra-Ambient Stability. Cao Y; Wang X; Sun J; Xiang L; Li D; He L; Gao F; Chen C; Li S ACS Appl Mater Interfaces; 2023 Aug; 15(33):40032-40041. PubMed ID: 37556164 [TBL] [Abstract][Full Text] [Related]
19. Regulating Crystal Orientation via Ligand Anchoring Enables Efficient Wide-Bandgap Perovskite Solar Cells and Tandems. Guan H; Zhou S; Fu S; Pu D; Chen X; Ge Y; Wang S; Wang C; Cui H; Liang J; Hu X; Meng W; Fang G; Ke W Adv Mater; 2024 Jan; 36(1):e2307987. PubMed ID: 37956304 [TBL] [Abstract][Full Text] [Related]
20. Suppressed Voltage Deficit and Degradation of Perovskite Solar Cells by Regulating the Mineralization of Lead Iodide. Chen L; Chen J; Wang C; Ren H; Hou HY; Zhang YF; Li YQ; Gao X; Tang JX Small; 2023 Jun; 19(24):e2207817. PubMed ID: 36919945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]