These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34927868)

  • 1. Molecular Coupling and Self-Assembly Strategy toward WSe
    Zhang G; Ou X; Yang J; Tang Y
    Small Methods; 2021 Aug; 5(8):e2100374. PubMed ID: 34927868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penne-Like MoS
    Zhu H; Zhang F; Li J; Tang Y
    Small; 2018 Mar; 14(13):e1703951. PubMed ID: 29399964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries.
    Mu S; Liu Q; Kidkhunthod P; Zhou X; Wang W; Tang Y
    Natl Sci Rev; 2021 Jul; 8(7):nwaa178. PubMed ID: 34691681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual-Ion Battery.
    Xiang L; Ou X; Wang X; Zhou Z; Li X; Tang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17924-17930. PubMed ID: 32558980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries.
    Wang H; Wu Q; Wang Y; Lv X; Wang HG
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1024-1030. PubMed ID: 34487925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Interface Design for Stress Regulation of a Silicon Anode toward Highly Stable Dual-Ion Batteries.
    Jiang C; Xiang L; Miao S; Shi L; Xie D; Yan J; Zheng Z; Zhang X; Tang Y
    Adv Mater; 2020 Apr; 32(17):e1908470. PubMed ID: 32108386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bipolar and Self-Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dual-Ion Batteries.
    Wang HG; Wang H; Si Z; Li Q; Wu Q; Shao Q; Wu L; Liu Y; Wang Y; Song S; Zhang H
    Angew Chem Int Ed Engl; 2019 Jul; 58(30):10204-10208. PubMed ID: 31127675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudocapacitive Ti-Doped Niobium Pentoxide Nanoflake Structure Design for a Fast Kinetics Anode toward a High-Performance Mg-Ion-Based Dual-Ion Battery.
    Yang R; Zhang F; Lei X; Zheng Y; Zhao G; Tang Y; Lee CS
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47539-47547. PubMed ID: 32986396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Ultrahigh-Mass-Loading Integrated Free-Standing Functional All-Carbon Positive Electrode Prepared using an Architecture Tailoring Strategy for High-Energy-Density Dual-Ion Batteries.
    Wei Y; Tang B; Liang X; Zhang F; Tang Y
    Adv Mater; 2023 Jul; 35(30):e2302086. PubMed ID: 37086153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Aqueous/Nonaqueous Water-in-Bisalt Electrolyte Enables Safe Dual Ion Batteries.
    Zhu J; Xu Y; Fu Y; Xiao D; Li Y; Liu L; Wang Y; Zhang Q; Li J; Yan X
    Small; 2020 Apr; 16(17):e1905838. PubMed ID: 32227436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-Shell CoSe
    Zhang S; Sun L; Yu L; Zhai G; Li L; Liu X; Wang H
    Small; 2021 Dec; 17(49):e2103005. PubMed ID: 34605147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-Based Dual-Ion Battery Based on the Organic Anode and Ionic Liquid Electrolyte.
    Wu H; Hu T; Chang S; Li L; Yuan W
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44254-44265. PubMed ID: 34519196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ fabrication of ultrathin few-layered WSe
    Kang B; Chen X; Zeng L; Luo F; Li X; Xu L; Yang MQ; Chen Q; Wei M; Qian Q
    J Colloid Interface Sci; 2020 Aug; 574():217-228. PubMed ID: 32325287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Na
    Li C; Luo B; Zhao Y; Chen Y; Yang H; Song J; Zhao L; Fu X
    RSC Adv; 2021 Nov; 11(60):37700-37707. PubMed ID: 35498105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro/Nano Na
    Zhao L; Zhao H; Wang J; Zhang Y; Li Z; Du Z; Świerczek K; Hou Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8445-8454. PubMed ID: 33560822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Energy-Density Sodium-Ion Hybrid Capacitors Enabled by Interface-Engineered Hierarchical TiO
    Feng W; Maça RR; Etacheri V
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4443-4453. PubMed ID: 31909958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dual Carbon-Based Potassium Dual Ion Battery with Robust Comprehensive Performance.
    Zhu J; Li Y; Yang B; Liu L; Li J; Yan X; He D
    Small; 2018 Jul; ():e1801836. PubMed ID: 29971944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism.
    Yu ZE; Lyu Y; Wang Y; Xu S; Cheng H; Mu X; Chu J; Chen R; Liu Y; Guo B
    Chem Commun (Camb); 2020 Jan; 56(5):778-781. PubMed ID: 31845678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries.
    Zhang J; Yin YX; Guo YG
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27838-44. PubMed ID: 26618232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Potassium-Ion-Based Dual-Ion Battery.
    Ji B; Zhang F; Song X; Tang Y
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28295667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.