These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34927879)
1. In Situ Quantification of the Local Electrocatalytic Activity via Electrochemical Scanning Tunneling Microscopy. Haid RW; Kluge RM; Liang Y; Bandarenka AS Small Methods; 2021 Feb; 5(2):e2000710. PubMed ID: 34927879 [TBL] [Abstract][Full Text] [Related]
2. Revealing the Nature of Active Sites on Pt-Gd and Pt-Pr Alloys during the Oxygen Reduction Reaction. Kluge RM; Psaltis E; Haid RW; Hou S; Schmidt TO; Schneider O; Garlyyev B; Calle-Vallejo F; Bandarenka AS ACS Appl Mater Interfaces; 2022 May; 14(17):19604-19613. PubMed ID: 35442013 [TBL] [Abstract][Full Text] [Related]
3. Observing Electrocatalytic Processes via In Situ Electrochemical Scanning Tunneling Microscopy: Latest Advances. Zheng W; Lee LYS Chem Asian J; 2022 Aug; 17(15):e202200384. PubMed ID: 35621190 [TBL] [Abstract][Full Text] [Related]
4. Insights into electrocatalysis by scanning tunnelling microscopy. Wang X; Wang YQ; Feng YC; Wang D; Wan LJ Chem Soc Rev; 2021 May; 50(10):5832-5849. PubMed ID: 34027957 [TBL] [Abstract][Full Text] [Related]
5. Revealing Active Sites for Hydrogen Evolution at Pt and Pd Atomic Layers on Au Surfaces. Liang Y; Csoklich C; McLaughlin D; Schneider O; Bandarenka AS ACS Appl Mater Interfaces; 2019 Apr; 11(13):12476-12480. PubMed ID: 30864772 [TBL] [Abstract][Full Text] [Related]
9. Direct instrumental identification of catalytically active surface sites. Pfisterer JHK; Liang Y; Schneider O; Bandarenka AS Nature; 2017 Sep; 549(7670):74-77. PubMed ID: 28880284 [TBL] [Abstract][Full Text] [Related]
10. STM, SECPM, AFM and Electrochemistry on Single Crystalline Surfaces. Wolfschmidt H; Baier C; Gsell S; Fischer M; Schreck M; Stimming U Materials (Basel); 2010 Aug; 3(8):4196-4213. PubMed ID: 28883327 [TBL] [Abstract][Full Text] [Related]
11. Selective Modification and Probing of the Electrocatalytic Activity of Step Sites. Klein J; Chesnyak V; Löw M; Schilling M; Engstfeld AK; Behm RJ J Am Chem Soc; 2020 Jan; 142(3):1278-1286. PubMed ID: 31875391 [TBL] [Abstract][Full Text] [Related]
12. Direct STM elucidation of the effects of atomic-level structure on Pt(111) electrodes for dissolved CO oxidation. Inukai J; Tryk DA; Abe T; Wakisaka M; Uchida H; Watanabe M J Am Chem Soc; 2013 Jan; 135(4):1476-90. PubMed ID: 23294135 [TBL] [Abstract][Full Text] [Related]
13. Atomic-Scale Identification of the Electrochemical Roughening of Platinum. Jacobse L; Rost MJ; Koper MTM ACS Cent Sci; 2019 Dec; 5(12):1920-1928. PubMed ID: 31893221 [TBL] [Abstract][Full Text] [Related]
15. An STM study of the pH dependent redox activity of a two-dimensional hydrogen bonding porphyrin network at an electrochemical interface. Yuan Q; Xing Y; Borguet E J Am Chem Soc; 2010 Apr; 132(14):5054-60. PubMed ID: 20307064 [TBL] [Abstract][Full Text] [Related]
16. Co-adsorption of CO onto a Ag-modified Pt(111)--restructuring of a Ag UPD layer monitored by EC-STM. Domke KF; Xiao XY; Baltruschat H Phys Chem Chem Phys; 2008 Mar; 10(11):1555-61. PubMed ID: 18327311 [TBL] [Abstract][Full Text] [Related]
17. Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: studies using in-situ scanning tunneling microscopy. Kim YG; Kim JY; Vairavapandian D; Stickney JL J Phys Chem B; 2006 Sep; 110(36):17998-8006. PubMed ID: 16956291 [TBL] [Abstract][Full Text] [Related]
18. In Situ Electrochemical Tip-Enhanced Raman Spectroscopy with a Chemically Modified Tip. Goubert G; Chen X; Jiang S; Van Duyne RP J Phys Chem Lett; 2018 Jul; 9(14):3825-3828. PubMed ID: 29945445 [TBL] [Abstract][Full Text] [Related]
19. Step-induced double-row pattern of interfacial water on rutile TiO Sun Y; Wu CR; Wang F; Bi RH; Zhuang YB; Liu S; Chen MS; Zhang KH; Yan JW; Mao BW; Tian ZQ; Cheng J Chem Sci; 2024 Aug; 15(31):12264-12269. PubMed ID: 39118606 [TBL] [Abstract][Full Text] [Related]