These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34927970)

  • 21. Enhanced Adsorption and Mass Transfer of Hierarchically Porous Zr-MOF Nanoarchitectures toward Toxic Chemical Removal.
    Wang X; Su R; Zhao Y; Guo W; Gao S; Li K; Liang G; Luan Z; Li L; Xi H; Zou R
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58848-58861. PubMed ID: 34855367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix.
    Lahtinen E; Precker RLM; Lahtinen M; Hey-Hawkins E; Haukka M
    Chempluschem; 2019 Feb; 84(2):222-225. PubMed ID: 31950695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemically Active, Porous 3D-Printed Thermoplastic Composites.
    Evans KA; Kennedy ZC; Arey BW; Christ JF; Schaef HT; Nune SK; Erikson RL
    ACS Appl Mater Interfaces; 2018 May; 10(17):15112-15121. PubMed ID: 29383933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sub-5 nm Ultrasmall Metal-Organic Framework Nanocrystals for Highly Efficient Electrochemical Energy Storage.
    Xiao P; Bu F; Zhao R; Aly Aboud MF; Shakir I; Xu Y
    ACS Nano; 2018 Apr; 12(4):3947-3953. PubMed ID: 29558111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Embedding Functional Biomacromolecules within Peptide-Directed Metal-Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement.
    Chen G; Huang S; Kou X; Zhu F; Ouyang G
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13947-13954. PubMed ID: 32400001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size control over metal-organic framework porous nanocrystals.
    Marshall CR; Staudhammer SA; Brozek CK
    Chem Sci; 2019 Nov; 10(41):9396-9408. PubMed ID: 32055316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Practical MOF Nanoarchitectonics: New Strategies for Enhancing the Processability of MOFs for Practical Applications.
    Cheng P; Wang C; Kaneti YV; Eguchi M; Lin J; Yamauchi Y; Na J
    Langmuir; 2020 Apr; 36(16):4231-4249. PubMed ID: 32293183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using functional nano- and microparticles for the preparation of metal-organic framework composites with novel properties.
    Doherty CM; Buso D; Hill AJ; Furukawa S; Kitagawa S; Falcaro P
    Acc Chem Res; 2014 Feb; 47(2):396-405. PubMed ID: 24205847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Cooperativity of Fe
    Fu CW; Lirio S; Shih YH; Liu WL; Lin CH; Huang HY
    Chemistry; 2018 Jul; 24(38):9598-9605. PubMed ID: 29745473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications.
    Doonan C; Riccò R; Liang K; Bradshaw D; Falcaro P
    Acc Chem Res; 2017 Jun; 50(6):1423-1432. PubMed ID: 28489346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processable UiO-66 Metal-Organic Framework Fluid Gel and Electrical Conductivity of Its Nanofilm with Sub-100 nm Thickness.
    Somjit V; Thinsoongnoen P; Waiprasoet S; Pila T; Pattanasattayavong P; Horike S; Kongpatpanich K
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30844-30852. PubMed ID: 34165275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-Organic Frameworks as Platforms for Functional Materials.
    Cui Y; Li B; He H; Zhou W; Chen B; Qian G
    Acc Chem Res; 2016 Mar; 49(3):483-93. PubMed ID: 26878085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gel-Print-Grow: A New Way of 3D Printing Metal-Organic Frameworks.
    Lawson S; Alwakwak AA; Rownaghi AA; Rezaei F
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56108-56117. PubMed ID: 33274935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid Generation of Hierarchically Porous Metal-Organic Frameworks through Laser Photolysis.
    Wang KY; Feng L; Yan TH; Wu S; Joseph EA; Zhou HC
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11349-11354. PubMed ID: 32243687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mixed-Metal MOF-Derived Carbon Sponges for Oil Absorption.
    González CMO; de Monserrat Navarro Tellez A; Kharisov BI; Hernández JMG; Quezada TES; González LT; de la Fuente IG
    Recent Pat Nanotechnol; 2022; 16(2):128-138. PubMed ID: 35297341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile Exfoliation of 3D Pillared Metal-Organic Frameworks (MOFs) to Produce MOF Nanosheets with Functionalized Surfaces.
    Deng JH; Wen YQ; Willman J; Liu WJ; Gong YN; Zhong DC; Lu TB; Zhou HC
    Inorg Chem; 2019 Aug; 58(16):11020-11027. PubMed ID: 31385513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic Regulation of C
    Lv HJ; Li YP; Xue YY; Jiang YC; Li SN; Hu MC; Zhai QG
    Inorg Chem; 2020 Apr; 59(7):4825-4834. PubMed ID: 32186866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal-organic frameworks based membranes for liquid separation.
    Li X; Liu Y; Wang J; Gascon J; Li J; Van der Bruggen B
    Chem Soc Rev; 2017 Nov; 46(23):7124-7144. PubMed ID: 29110013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method.
    Chernikova V; Shekhah O; Eddaoudi M
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20459-64. PubMed ID: 27415640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock.
    Zhou X; Miao Y; Suslick KS; Dlott DD
    Acc Chem Res; 2020 Dec; 53(12):2806-2815. PubMed ID: 32935969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.