These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 34928003)

  • 61. Three-Dimensional Zinc-Seeded Carbon Nanofiber Architectures as Lightweight and Flexible Hosts for a Highly Reversible Zinc Metal Anode.
    Wang JH; Chen LF; Dong WX; Zhang K; Qu YF; Qian JW; Yu SH
    ACS Nano; 2023 Oct; 17(19):19087-19097. PubMed ID: 37726178
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrafast Rechargeable Zinc Battery Based on High-Voltage Graphite Cathode and Stable Nonaqueous Electrolyte.
    Zhang N; Dong Y; Wang Y; Wang Y; Li J; Xu J; Liu Y; Jiao L; Cheng F
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32978-32986. PubMed ID: 31418545
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Steric-hindrance Effect Tuned Ion Solvation Enabling High Performance Aqueous Zinc Ion Batteries.
    Dou H; Wu X; Xu M; Feng R; Ma Q; Luo D; Zong K; Wang X; Chen Z
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202401974. PubMed ID: 38470070
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes.
    Ma L; Li Q; Ying Y; Ma F; Chen S; Li Y; Huang H; Zhi C
    Adv Mater; 2021 Mar; 33(12):e2007406. PubMed ID: 33604973
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries.
    Huang JQ; Guo X; Lin X; Zhu Y; Zhang B
    Research (Wash D C); 2019; 2019():2635310. PubMed ID: 31912030
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synergistic Ion Sieve and Solvation Regulation by Recyclable Clay-Based Electrolyte Membrane for Stable Zn-Iodine Battery.
    Xu H; Zhang R; Luo D; Wang J; Dou H; Zhang X; Sun G
    ACS Nano; 2023 Dec; 17(24):25291-25300. PubMed ID: 38085605
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spontaneous Desaturation of the Solvation Sheath for High-Performance Anti-Freezing Zinc-Ion Gel-Electrolyte.
    Li M; Xi C; Wang X; Li L; Xiao Y; Chao Y; Zheng X; Liu Z; Yu Y; Yang C
    Small; 2023 Aug; 19(35):e2301569. PubMed ID: 37096921
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Molecular-Sieve Electrolyte Membrane enables Separator-Free Zinc Batteries with Ultralong Cycle Life.
    Zhu J; Bie Z; Cai X; Jiao Z; Wang Z; Tao J; Song W; Fan HJ
    Adv Mater; 2022 Oct; 34(43):e2207209. PubMed ID: 36065756
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An aqueous electrolyte densified by perovskite SrTiO
    Deng R; He Z; Chu F; Lei J; Cheng Y; Zhou Y; Wu F
    Nat Commun; 2023 Aug; 14(1):4981. PubMed ID: 37591851
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High-Capacity Zinc Anode with 96 % Utilization Rate Enabled by Solvation Structure Design.
    Wang M; Ma J; Meng Y; Sun J; Yuan Y; Chuai M; Chen N; Xu Y; Zheng X; Li Z; Chen W
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214966. PubMed ID: 36334063
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte.
    Naveed A; Yang H; Yang J; Nuli Y; Wang J
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2760-2764. PubMed ID: 30604584
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In-Situ Integration of a Hydrophobic and Fast-Zn
    Liu M; Yuan W; Ma G; Qiu K; Nie X; Liu Y; Shen S; Zhang N
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202304444. PubMed ID: 37129439
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Novel Alkaline Zn/Na
    Yuan T; Zhang J; Pu X; Chen Z; Tang C; Zhang X; Ai X; Huang Y; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34108-34115. PubMed ID: 30216037
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries.
    Yang H; Qiao Y; Chang Z; Deng H; He P; Zhou H
    Adv Mater; 2020 Sep; 32(38):e2004240. PubMed ID: 32797719
    [TBL] [Abstract][Full Text] [Related]  

  • 75.
    Ma Y; Zhang Q; Liu L; Li Y; Li H; Yan Z; Chen J
    Natl Sci Rev; 2022 Oct; 9(10):nwac051. PubMed ID: 36415317
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Regulating Interfacial Ion Migration via Wool Keratin Mediated Biogel Electrolyte toward Robust Flexible Zn-Ion Batteries.
    Shao Y; Zhao J; Hu W; Xia Z; Luo J; Zhou Y; Zhang L; Yang X; Ma N; Yang D; Shi Q; Sun J; Zhang L; Hui J; Shao Y
    Small; 2022 Mar; 18(10):e2107163. PubMed ID: 35112793
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Highly Concentrated Salt Electrolyte for a Highly Stable Aqueous Dual-Ion Zinc Battery.
    Clarisza A; Bezabh HK; Jiang SK; Huang CJ; Olbasa BW; Wu SH; Su WN; Hwang BJ
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36644-36655. PubMed ID: 35927979
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries.
    Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-Energy and Stable Subfreezing Aqueous Zn-MnO
    Gao S; Li B; Tan H; Xia F; Dahunsi O; Xu W; Liu Y; Wang R; Cheng Y
    Adv Mater; 2022 May; 34(21):e2201510. PubMed ID: 35338529
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A High-Voltage, Dendrite-Free, and Durable Zn-Graphite Battery.
    Wang G; Kohn B; Scheler U; Wang F; Oswald S; Löffler M; Tan D; Zhang P; Zhang J; Feng X
    Adv Mater; 2020 Jan; 32(4):e1905681. PubMed ID: 31788883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.