These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 34928003)

  • 81. A High-Rate and Long-Life Aqueous Rechargeable Ammonium Zinc Hybrid Battery.
    Li C; Zhang D; Ma F; Ma T; Wang J; Chen Y; Zhu Y; Fu L; Wu Y; Huang W
    ChemSusChem; 2019 Aug; 12(16):3732-3736. PubMed ID: 31328386
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries.
    Yang H; Chang Z; Qiao Y; Deng H; Mu X; He P; Zhou H
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9377-9381. PubMed ID: 32202034
    [TBL] [Abstract][Full Text] [Related]  

  • 83.
    Xu J; Lv W; Yang W; Jin Y; Jin Q; Sun B; Zhang Z; Wang T; Zheng L; Shi X; Sun B; Wang G
    ACS Nano; 2022 Jul; 16(7):11392-11404. PubMed ID: 35848633
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Novel 3D Nanoporous Zn-Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries.
    Liu B; Wang S; Wang Z; Lei H; Chen Z; Mai W
    Small; 2020 Jun; 16(22):e2001323. PubMed ID: 32378354
    [TBL] [Abstract][Full Text] [Related]  

  • 85. An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries.
    Shang Y; Chen N; Li Y; Chen S; Lai J; Huang Y; Qu W; Wu F; Chen R
    Adv Mater; 2020 Oct; 32(40):e2004017. PubMed ID: 32876955
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Hybrid Aqueous/Nonaqueous Water-in-Bisalt Electrolyte Enables Safe Dual Ion Batteries.
    Zhu J; Xu Y; Fu Y; Xiao D; Li Y; Liu L; Wang Y; Zhang Q; Li J; Yan X
    Small; 2020 Apr; 16(17):e1905838. PubMed ID: 32227436
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Regulating the Li
    Xiao D; Li Q; Luo D; Li G; Liu H; Shui L; Gourley S; Zhou G; Wang X; Chen Z
    Small; 2020 Nov; 16(47):e2004688. PubMed ID: 33136327
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Interface regulation of the Zn anode by using a low concentration electrolyte additive for aqueous Zn batteries.
    Wang K; Li Q; Zhang G; Li S; Qiu T; Liu XX; Sun X
    Chem Sci; 2023 Dec; 15(1):230-237. PubMed ID: 38131071
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Nitrogen-Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zinc-Ion Batteries.
    Song TB; Huang ZH; Zhang XR; Ni JW; Xiong HM
    Small; 2023 Aug; 19(31):e2205558. PubMed ID: 36650986
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries.
    Ma L; Chen S; Li N; Liu Z; Tang Z; Zapien JA; Chen S; Fan J; Zhi C
    Adv Mater; 2020 Apr; 32(14):e1908121. PubMed ID: 32091149
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Microstructural Evolution of Zinc-Ion Species from Aqueous to Hydrated Eutectic Electrolyte for Zn-Ion Batteries.
    Su L; Lu F; Li Y; Li X; Chen L; Gao Y; Zheng L; Gao X
    ChemSusChem; 2023 Jul; 16(14):e202300285. PubMed ID: 37010877
    [TBL] [Abstract][Full Text] [Related]  

  • 92. "Soggy-Sand" Chemistry for High-Voltage Aqueous Zinc-Ion Batteries.
    Deng R; Chen J; Chu F; Qian M; He Z; Robertson AW; Maier J; Wu F
    Adv Mater; 2024 Mar; 36(11):e2311153. PubMed ID: 38095834
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Aqueous Dual-Electrolyte Full-Cell System for Improving Energy Density of Sodium-Ion Batteries.
    Zhou W; Zheng Y; Zartashia M; Shan Y; Noor H; Lou H; Hou X
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34835-34843. PubMed ID: 35875895
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Na Superionic Conductor-Type TiNb(PO
    Zhang J; Chen L; Niu L; Jiang P; Shao G; Liu Z
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39757-39764. PubMed ID: 31584258
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Small-Dipole-Molecule-Containing Electrolytes for High-Voltage Aqueous Rechargeable Batteries.
    Huang Z; Wang T; Li X; Cui H; Liang G; Yang Q; Chen Z; Chen A; Guo Y; Fan J; Zhi C
    Adv Mater; 2022 Jan; 34(4):e2106180. PubMed ID: 34699667
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries.
    Zhang J; Lei Q; Ren Z; Zhu X; Li J; Li Z; Liu S; Ding Y; Jiang Z; Li J; Huang Y; Li X; Zhou X; Wang Y; Zhu D; Zeng M; Fu L
    ACS Nano; 2021 Nov; 15(11):17748-17756. PubMed ID: 34714615
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Working Aqueous Zn Metal Batteries at 100 °C.
    Wang J; Yang Y; Wang Y; Dong S; Cheng L; Li Y; Wang Z; Trabzon L; Wang H
    ACS Nano; 2022 Oct; 16(10):15770-15778. PubMed ID: 36066564
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Advanced Buffering Acidic Aqueous Electrolytes for Ultra-Long Life Aqueous Zinc-Ion Batteries.
    Zhao X; Zhang X; Dong N; Yan M; Zhang F; Mochizuki K; Pan H
    Small; 2022 May; 18(21):e2200742. PubMed ID: 35451192
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Dendrite-Free Engineering toward Efficient Zinc Storage: Recent Progress and Future Perspectives.
    Miao L; Zhang J; Lv Y; Gan L; Liu M
    Chemistry; 2023 Apr; 29(20):e202203973. PubMed ID: 36597275
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic-Zincophobic Interfacial Layers and Interrupted Hydrogen-Bond Electrolytes.
    Cao L; Li D; Soto FA; Ponce V; Zhang B; Ma L; Deng T; Seminario JM; Hu E; Yang XQ; Balbuena PB; Wang C
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18845-18851. PubMed ID: 34196094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.