BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34928021)

  • 1. Rapid Microwave-Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodium-Ion Batteries.
    Desai AV; Rainer DN; Pramanik A; Cabañero JM; Morris RE; Armstrong AR
    Small Methods; 2021 Dec; 5(12):e2101016. PubMed ID: 34928021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenylpyridine Dicarboxylate as Highly Efficient Organic Anode for Na-Ion Batteries.
    Jia K; Zhu L; Wu F
    ChemSusChem; 2021 Aug; 14(15):3124-3130. PubMed ID: 34076360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halogenated Carboxylates as Organic Anodes for Stable and Sustainable Sodium-Ion Batteries.
    Huang J; Callender KIE; Qin K; Girgis M; Paige M; Yang Z; Clayborne AZ; Luo C
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40784-40792. PubMed ID: 36049020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid preparation of binary mixtures of sodium carboxylates as anodes in sodium-ion batteries.
    Desai AV; Ettlinger R; Seleghini HS; Stanzione MG; Cabañero JM; Ashbrook SE; Morris RE; Armstrong AR
    J Mater Chem A Mater; 2024 May; 12(20):12119-12125. PubMed ID: 38779224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-Standing NiS₂ Electrode as High-Rate Anode Material for Sodium-Ion Batteries.
    Sadan MK; Kim HH; Kim C; Cho GB; Reddy NS; Cho KK; Nam TH; Kim KW; Ahn JH; Ahn HJ
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7119-7123. PubMed ID: 32604568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries.
    Li Y; Xia D; Tao L; Xu Z; Yu D; Jin Q; Lin F; Huang H
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28461-28472. PubMed ID: 38780280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium Naphthalene-2,6-dicarboxylate: An Anode for Sodium Batteries.
    Cabañero JM; Pimenta V; Cannon KC; Morris RE; Armstrong AR
    ChemSusChem; 2019 Oct; 12(19):4522-4528. PubMed ID: 31403248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-Active High-Performance Polyimides as Versatile Electrode Materials for Organic Lithium- and Sodium-Ion Batteries.
    Lubis AL; Baskoro F; Lin TH; Wong HQ; Liou GS; Yen HJ
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38148122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries.
    Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F
    J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.
    Luo C; Xu GL; Ji X; Hou S; Chen L; Wang F; Jiang J; Chen Z; Ren Y; Amine K; Wang C
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2879-2883. PubMed ID: 29378088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile and scalable synthesis of α-Fe
    Yin L; Pan Y; Li M; Zhao Y; Luo S
    Nanotechnology; 2020 Apr; 31(15):155402. PubMed ID: 31860879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable Electrochemical Synthesis of Copper Sulfides as Sodium-Ion Battery Anodes with Superior Rate Capability and Ultralong Cycle Life.
    Li H; Wang K; Cheng S; Jiang K
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8016-8025. PubMed ID: 29425016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Dimensional Rod-Like Sb₂S₃-Based Anode for High-Performance Sodium-Ion Batteries.
    Hou H; Jing M; Huang Z; Yang Y; Zhang Y; Chen J; Wu Z; Ji X
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19362-9. PubMed ID: 26284385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe
    Hou BH; Wang YY; Guo JZ; Zhang Y; Ning QL; Yang Y; Li WH; Zhang JP; Wang XL; Wu XL
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3581-3589. PubMed ID: 29303243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An iron oxyborate Fe
    Ping Q; Xu B; Ma X; Tian J; Wang B
    Dalton Trans; 2019 Apr; 48(17):5741-5748. PubMed ID: 30973167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-doped carbon encapsulated zinc vanadate polyhedron engineered from a metal-organic framework as a stable anode for alkali ion batteries.
    Fang Y; Chen Y; Zeng L; Yang T; Xu Q; Wang Y; Zeng S; Qian Q; Wei M; Chen Q
    J Colloid Interface Sci; 2021 Jul; 593():251-265. PubMed ID: 33744535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Effect on the Performance of Carboxylate Anode Materials in Na-Ion Batteries.
    Huang J; Li S; Wang Y; Kim EY; Yang Z; Chen D; Cheng L; Luo C
    Small; 2024 Apr; 20(14):e2308113. PubMed ID: 37972285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries.
    Zhang F; Zhu J; Zhang D; Schwingenschlögl U; Alshareef HN
    Nano Lett; 2017 Feb; 17(2):1302-1311. PubMed ID: 28098459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.