These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34928026)

  • 1. Recent Progress in the Transfer of Graphene Films and Nanostructures.
    Gao Y; Chen J; Chen G; Fan C; Liu X
    Small Methods; 2021 Dec; 5(12):e2100771. PubMed ID: 34928026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper.
    Banszerus L; Schmitz M; Engels S; Dauber J; Oellers M; Haupt F; Watanabe K; Taniguchi T; Beschoten B; Stampfer C
    Sci Adv; 2015 Jul; 1(6):e1500222. PubMed ID: 26601221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices.
    Chen Z; Narita A; Müllen K
    Adv Mater; 2020 Nov; 32(45):e2001893. PubMed ID: 32945038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene nanomesh as highly sensitive chemiresistor gas sensor.
    Paul RK; Badhulika S; Saucedo NM; Mulchandani A
    Anal Chem; 2012 Oct; 84(19):8171-8. PubMed ID: 22931286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Selective Gas Sensors Based on Graphene Nanoribbons Grown by Chemical Vapor Deposition.
    Shekhirev M; Lipatov A; Torres A; Vorobeva NS; Harkleroad A; Lashkov A; Sysoev V; Sinitskii A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7392-7402. PubMed ID: 32011111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer-Free CVD Growth of High-Quality Wafer-Scale Graphene at 300 °C for Device Mass Fabrication.
    Qian F; Deng J; Dong Y; Xu C; Hu L; Fu G; Chang P; Xie Y; Sun J
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53174-53182. PubMed ID: 36383777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration.
    Chen Z; Zhang W; Palma CA; Lodi Rizzini A; Liu B; Abbas A; Richter N; Martini L; Wang XY; Cavani N; Lu H; Mishra N; Coletti C; Berger R; Klappenberger F; Kläui M; Candini A; Affronte M; Zhou C; De Renzi V; Del Pennino U; Barth JV; Räder HJ; Narita A; Feng X; Müllen K
    J Am Chem Soc; 2016 Nov; 138(47):15488-15496. PubMed ID: 27933922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.
    Wang H; Yu G
    Adv Mater; 2016 Jul; 28(25):4956-75. PubMed ID: 27122247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress and Challenges in Transfer of Large-Area Graphene Films.
    Chen Y; Gong XL; Gai JG
    Adv Sci (Weinh); 2016 Aug; 3(8):1500343. PubMed ID: 27812479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors.
    Ren H; Zheng L; Wang G; Gao X; Tan Z; Shan J; Cui L; Li K; Jian M; Zhu L; Zhang Y; Peng H; Wei D; Liu Z
    ACS Nano; 2019 May; 13(5):5541-5548. PubMed ID: 31034773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate.
    Wang H; Xue X; Jiang Q; Wang Y; Geng D; Cai L; Wang L; Xu Z; Yu G
    J Am Chem Soc; 2019 Jul; 141(28):11004-11008. PubMed ID: 31265267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of large-area graphene films for high-performance transparent conductive electrodes.
    Li X; Zhu Y; Cai W; Borysiak M; Han B; Chen D; Piner RD; Colombo L; Ruoff RS
    Nano Lett; 2009 Dec; 9(12):4359-63. PubMed ID: 19845330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate Engineering for CVD Growth of Single Crystal Graphene.
    Huang M; Deng B; Dong F; Zhang L; Zhang Z; Chen P
    Small Methods; 2021 May; 5(5):e2001213. PubMed ID: 34928093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene.
    Lin L; Deng B; Sun J; Peng H; Liu Z
    Chem Rev; 2018 Sep; 118(18):9281-9343. PubMed ID: 30207458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.
    Reina A; Jia X; Ho J; Nezich D; Son H; Bulovic V; Dresselhaus MS; Kong J
    Nano Lett; 2009 Jan; 9(1):30-5. PubMed ID: 19046078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms.
    Chen Z; Qi Y; Chen X; Zhang Y; Liu Z
    Adv Mater; 2019 Mar; 31(9):e1803639. PubMed ID: 30443937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Mass Production of CVD Graphene Films.
    Deng B; Liu Z; Peng H
    Adv Mater; 2019 Mar; 31(9):e1800996. PubMed ID: 30277604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.