BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34928031)

  • 1. In Situ Manipulation and Micromechanical Characterization of Diatom Frustule Constituents Using Focused Ion Beam Scanning Electron Microscopy.
    Soleimani M; van Breemen LCA; Maddala SP; Joosten RRM; Wu H; Schreur-Piet I; van Benthem RATM; Friedrich H
    Small Methods; 2021 Dec; 5(12):e2100638. PubMed ID: 34928031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach for probing the structure and mechanical properties of diatoms: Toward engineered nanotemplates.
    Moreno MD; Ma K; Schoenung J; Dávila LP
    Acta Biomater; 2015 Oct; 25():313-24. PubMed ID: 26196080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Morphology and Mechanics of Biogenic Hierarchical Materials at and below Micrometer Scale.
    Soleimani M; van den Broek SJJ; Joosten RRM; van Hazendonk LS; Maddala SP; van Breemen LCA; van Benthem RATM; Friedrich H
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying the thickness, pore size, and composition of diatom frustule in Pinnularia sp. with Al
    Soleimani M; Rutten L; Maddala SP; Wu H; Eren ED; Mezari B; Schreur-Piet I; Friedrich H; van Benthem RATM
    Sci Rep; 2020 Nov; 10(1):19498. PubMed ID: 33177559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and Experimental Study of the Mechanical Response of Diatom Frustules.
    Topal E; Rajendran H; Zgłobicka I; Gluch J; Liao Z; Clausner A; Kurzydłowski KJ; Zschech E
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AFM nanoindentations of diatom biosilica surfaces.
    Losic D; Short K; Mitchell JG; Lal R; Voelcker NH
    Langmuir; 2007 Apr; 23(9):5014-21. PubMed ID: 17397194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-photoluminescence of single living diatom cells.
    LeDuff P; Roesijadi G; Rorrer GL
    Luminescence; 2016 Nov; 31(7):1379-1383. PubMed ID: 26918264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of hierarchical design and morphology in the mechanical response of diatom-inspired structures via simulation.
    Gutiérrez A; Guney MG; Fedder GK; Dávila LP
    Biomater Sci; 2017 Dec; 6(1):146-153. PubMed ID: 29147717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment.
    Zhen L; Ford N; Gale DK; Roesijadi G; Rorrer GL
    Biosens Bioelectron; 2016 May; 79():742-8. PubMed ID: 26774089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalization of the living diatom Thalassiosira weissflogii with thiol moieties.
    Lang Y; del Monte F; Collins L; Rodriguez BJ; Thompson K; Dockery P; Finn DP; Pandit A
    Nat Commun; 2013; 4():2683. PubMed ID: 24177724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D elemental and structural analysis of biological specimens using electrons and ions.
    Scott K
    J Microsc; 2011 Apr; 242(1):86-93. PubMed ID: 21118236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific characterization of beetle horn shell with micromechanical bending test in focused ion beam system.
    Lee HT; Kim HJ; Kim CS; Gomi K; Taya M; Nomura S; Ahn SH
    Acta Biomater; 2017 Jul; 57():395-403. PubMed ID: 28455220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frustule morphogenesis of raphid pennate diatom Encyonema ventricosum (Agardh) Grunow.
    Bedoshvili YD; Gneusheva KV; Popova MS; Avezova TN; Arsentyev KY; Likhoshway YV
    Protoplasma; 2018 May; 255(3):911-921. PubMed ID: 29270874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis.
    Goessling JW; Su Y; Cartaxana P; Maibohm C; Rickelt LF; Trampe ECL; Walby SL; Wangpraseurt D; Wu X; Ellegaard M; Kühl M
    New Phytol; 2018 Jul; 219(1):122-134. PubMed ID: 29672846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations.
    Losic D; Rosengarten G; Mitchell JG; Voelcker NH
    J Nanosci Nanotechnol; 2006 Apr; 6(4):982-9. PubMed ID: 16736754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method for SEM examination of sectioned diatom frustules.
    Massé G; Poulin M; Belt ST; Robert JM; Barreau A; Rincé Y; Rowland SJ
    J Microsc; 2001 Oct; 204(Pt 1):87-92. PubMed ID: 11580816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule.
    Aitken ZH; Luo S; Reynolds SN; Thaulow C; Greer JR
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2017-22. PubMed ID: 26858446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength and orientation dependent capture of light by diatom frustule nanostructures.
    Romann J; Valmalette JC; Chauton MS; Tranell G; Einarsrud MA; Vadstein O
    Sci Rep; 2015 Dec; 5():17403. PubMed ID: 26627680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa.
    De Stefano M; De Stefano L
    J Nanosci Nanotechnol; 2005 Jan; 5(1):15-24. PubMed ID: 15762156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in the optical properties of valve and girdle band in a centric diatom.
    Goessling JW; Su Y; Maibohm C; Ellegaard M; Kühl M
    Interface Focus; 2019 Feb; 9(1):20180031. PubMed ID: 30603064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.