BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34928061)

  • 21. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct observation of the nanoscale dynamics of membrane lipids in a living cell.
    Eggeling C; Ringemann C; Medda R; Schwarzmann G; Sandhoff K; Polyakova S; Belov VN; Hein B; von Middendorff C; Schönle A; Hell SW
    Nature; 2009 Feb; 457(7233):1159-62. PubMed ID: 19098897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F; Tavares M; Dufourc EJ
    Biochemistry; 2003 Feb; 42(6):1383-90. PubMed ID: 12578350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic pattern generation in cell membranes: Current insights into membrane organization.
    Raghunathan K; Kenworthy AK
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2018-2031. PubMed ID: 29752898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy.
    Heberle FA; Doktorova M; Scott HL; Skinkle AD; Waxham MN; Levental I
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19943-19952. PubMed ID: 32759206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation.
    Wassall SR; Leng X; Canner SW; Pennington ER; Kinnun JJ; Cavazos AT; Dadoo S; Johnson D; Heberle FA; Katsaras J; Shaikh SR
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1985-1993. PubMed ID: 29730243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of sphingomyelin- and cholesterol-enriched lipid domains during cytokinesis.
    Abe M; Kobayashi T
    Methods Cell Biol; 2017; 137():15-24. PubMed ID: 28065303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers.
    Matsumori N; Okazaki H; Nomura K; Murata M
    Chem Phys Lipids; 2011 Jul; 164(5):401-8. PubMed ID: 21664344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switchable Solvatochromic Probes for Live-Cell Super-resolution Imaging of Plasma Membrane Organization.
    Danylchuk DI; Moon S; Xu K; Klymchenko AS
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):14920-14924. PubMed ID: 31392763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The lipid raft hypothesis revisited--new insights on raft composition and function from super-resolution fluorescence microscopy.
    Owen DM; Magenau A; Williamson D; Gaus K
    Bioessays; 2012 Sep; 34(9):739-47. PubMed ID: 22696155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct mapping of nanoscale compositional connectivity on intact cell membranes.
    van Zanten TS; Gómez J; Manzo C; Cambi A; Buceta J; Reigada R; Garcia-Parajo MF
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15437-42. PubMed ID: 20713733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains.
    Kishimoto T; Ishitsuka R; Kobayashi T
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):812-829. PubMed ID: 26993577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane.
    Brameshuber M; Weghuber J; Ruprecht V; Gombos I; Horváth I; Vigh L; Eckerstorfer P; Kiss E; Stockinger H; Schütz GJ
    J Biol Chem; 2010 Dec; 285(53):41765-71. PubMed ID: 20966075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous molecular distribution in supported multicomponent lipid bilayers.
    Tokumasu F; Hwang J; Dvorak JA
    Langmuir; 2004 Feb; 20(3):614-8. PubMed ID: 15773083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorogenic Dimers as Bright Switchable Probes for Enhanced Super-Resolution Imaging of Cell Membranes.
    Aparin IO; Yan R; Pelletier R; Choi AA; Danylchuk DI; Xu K; Klymchenko AS
    J Am Chem Soc; 2022 Oct; 144(39):18043-18053. PubMed ID: 36153973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging.
    Schneider F; Waithe D; Galiani S; Bernardino de la Serna J; Sezgin E; Eggeling C
    Nano Lett; 2018 Jul; 18(7):4233-4240. PubMed ID: 29893574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-field scanning optical microscopy to identify membrane microdomains.
    Ianoul A; Johnston LJ
    Methods Mol Biol; 2007; 400():469-80. PubMed ID: 17951753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
    Manzo C; van Zanten TS; Garcia-Parajo MF
    Biophys J; 2011 Jan; 100(2):L8-10. PubMed ID: 21244822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy.
    Abe M; Kobayashi T
    Biochim Biophys Acta; 2014 May; 1841(5):720-6. PubMed ID: 23860017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.