BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34928061)

  • 41. Lipid rafts as functional heterogeneity in cell membranes.
    Lingwood D; Kaiser HJ; Levental I; Simons K
    Biochem Soc Trans; 2009 Oct; 37(Pt 5):955-60. PubMed ID: 19754431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Key molecular requirements for raft formation in lipid/cholesterol membranes.
    Hakobyan D; Heuer A
    PLoS One; 2014; 9(2):e87369. PubMed ID: 24498317
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spot Variation Fluorescence Correlation Spectroscopy for Analysis of Molecular Diffusion at the Plasma Membrane of Living Cells.
    Mailfert S; Wojtowicz K; Brustlein S; Blaszczak E; Bertaux N; Łukaszewicz M; Marguet D; Trombik T
    J Vis Exp; 2020 Nov; (165):. PubMed ID: 33252108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptive Lipid Immiscibility and Membrane Remodeling Are Active Functional Determinants of Primary Ciliogenesis.
    Bernabé-Rubio M; Bosch-Fortea M; García E; Bernardino de la Serna J; Alonso MA
    Small Methods; 2021 Feb; 5(2):e2000711. PubMed ID: 34927881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Actively maintained lipid nanodomains in biomembranes.
    Gómez J; Sagués F; Reigada R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021907. PubMed ID: 18352051
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes.
    Shim SH; Xia C; Zhong G; Babcock HP; Vaughan JC; Huang B; Wang X; Xu C; Bi GQ; Zhuang X
    Proc Natl Acad Sci U S A; 2012 Aug; 109(35):13978-83. PubMed ID: 22891300
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visualizing lipid structure and raft domains in living cells with two-photon microscopy.
    Gaus K; Gratton E; Kable EP; Jones AS; Gelissen I; Kritharides L; Jessup W
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15554-9. PubMed ID: 14673117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoscale membrane organization: where biochemistry meets advanced microscopy.
    Cambi A; Lidke DS
    ACS Chem Biol; 2012 Jan; 7(1):139-49. PubMed ID: 22004174
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains.
    Bhat HB; Kishimoto T; Abe M; Makino A; Inaba T; Murate M; Dohmae N; Kurahashi A; Nishibori K; Fujimori F; Greimel P; Ishitsuka R; Kobayashi T
    J Lipid Res; 2013 Oct; 54(10):2933-43. PubMed ID: 23918047
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Applications of STED fluorescence nanoscopy in unravelling nanoscale structure and dynamics of biological systems.
    Roobala C; Ilanila IP; Basu JK
    J Biosci; 2018 Jul; 43(3):471-484. PubMed ID: 30002267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. HDLs induce raft domain vanishing in heterogeneous giant vesicles.
    Puff N; Lamazière A; Seigneuret M; Trugnan G; Angelova MI
    Chem Phys Lipids; 2005 Feb; 133(2):195-202. PubMed ID: 15642587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy.
    Stöckl MT; Herrmann A
    Biochim Biophys Acta; 2010 Jul; 1798(7):1444-56. PubMed ID: 20056106
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy.
    Subczynski WK; Kusumi A
    Biochim Biophys Acta; 2003 Mar; 1610(2):231-43. PubMed ID: 12648777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane.
    Wüstner D; Modzel M; Lund FW; Lomholt MA
    Chem Phys Lipids; 2016 Sep; 199():106-135. PubMed ID: 27016337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Active Probes for Imaging Membrane Dynamics of Live Cells with High Spatial and Temporal Resolution over Extended Time Scales and Areas.
    Wang H; Feng Z; Del Signore SJ; Rodal AA; Xu B
    J Am Chem Soc; 2018 Mar; 140(10):3505-3509. PubMed ID: 29481071
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy.
    Kahya N; Scherfeld D; Bacia K; Poolman B; Schwille P
    J Biol Chem; 2003 Jul; 278(30):28109-15. PubMed ID: 12736276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.
    Vicidomini G; Ta H; Honigmann A; Mueller V; Clausen MP; Waithe D; Galiani S; Sezgin E; Diaspro A; Hell SW; Eggeling C
    Nano Lett; 2015 Sep; 15(9):5912-8. PubMed ID: 26235350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.