BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34928061)

  • 61. STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.
    Vicidomini G; Ta H; Honigmann A; Mueller V; Clausen MP; Waithe D; Galiani S; Sezgin E; Diaspro A; Hell SW; Eggeling C
    Nano Lett; 2015 Sep; 15(9):5912-8. PubMed ID: 26235350
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optical techniques for imaging membrane lipid microdomains in living cells.
    Owen DM; Neil MA; French PM; Magee AI
    Semin Cell Dev Biol; 2007 Oct; 18(5):591-8. PubMed ID: 17728161
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Super-resolution optical microscopy of lipid plasma membrane dynamics.
    Eggeling C
    Essays Biochem; 2015; 57():69-80. PubMed ID: 25658345
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy.
    El Kirat K; Morandat S
    Biochim Biophys Acta; 2007 Sep; 1768(9):2300-9. PubMed ID: 17560898
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Live-cell monitoring of protein localization to membrane rafts using protein-fragment complementation.
    Merezhko M; Pakarinen E; Uronen RL; Huttunen HJ
    Biosci Rep; 2020 Jan; 40(1):. PubMed ID: 31850494
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Active Probes for Imaging Membrane Dynamics of Live Cells with High Spatial and Temporal Resolution over Extended Time Scales and Areas.
    Wang H; Feng Z; Del Signore SJ; Rodal AA; Xu B
    J Am Chem Soc; 2018 Mar; 140(10):3505-3509. PubMed ID: 29481071
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Long-Term Live-Cell STED Nanoscopy of Primary and Cultured Cells with the Plasma Membrane HIDE Probe DiI-SiR.
    Thompson AD; Omar MH; Rivera-Molina F; Xi Z; Koleske AJ; Toomre DK; Schepartz A
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10408-10412. PubMed ID: 28679029
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization.
    Shaw JE; Epand RF; Epand RM; Li Z; Bittman R; Yip CM
    Biophys J; 2006 Mar; 90(6):2170-8. PubMed ID: 16361347
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids.
    Goh MWS; Tero R
    Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183626. PubMed ID: 33901442
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.
    Lawrence JC; Saslowsky DE; Edwardson JM; Henderson RM
    Biophys J; 2003 Mar; 84(3):1827-32. PubMed ID: 12609884
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts).
    Waheed AA; Shimada Y; Heijnen HF; Nakamura M; Inomata M; Hayashi M; Iwashita S; Slot JW; Ohno-Iwashita Y
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4926-31. PubMed ID: 11309501
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Spatial Relationship and Functional Relevance of Three Lipid Domain Populations at the Erythrocyte Surface.
    Conrard L; Stommen A; Cloos AS; Steinkühler J; Dimova R; Pollet H; Tyteca D
    Cell Physiol Biochem; 2018; 51(4):1544-1565. PubMed ID: 30497064
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Investigation of interfacial behavior of glycyrrhizin with a lipid raft model via a Langmuir monolayer study.
    Sakamoto S; Nakahara H; Uto T; Shoyama Y; Shibata O
    Biochim Biophys Acta; 2013 Apr; 1828(4):1271-83. PubMed ID: 23333324
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Super-resolution Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy Reveals Nanoscale Membrane Reorganization Induced by Pore-Forming Proteins.
    Sarangi NK; P II; Ayappa KG; Visweswariah SS; Basu JK
    Langmuir; 2016 Sep; 32(37):9649-57. PubMed ID: 27564541
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study.
    Shaikh SR; Dumaual AC; Castillo A; LoCascio D; Siddiqui RA; Stillwell W; Wassall SR
    Biophys J; 2004 Sep; 87(3):1752-66. PubMed ID: 15345554
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy.
    He HT; Marguet D
    Annu Rev Phys Chem; 2011; 62():417-36. PubMed ID: 21219145
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories.
    Hess ST; Gould TJ; Gudheti MV; Maas SA; Mills KD; Zimmerberg J
    Proc Natl Acad Sci U S A; 2007 Oct; 104(44):17370-5. PubMed ID: 17959773
    [TBL] [Abstract][Full Text] [Related]  

  • 80. NBD-cholesterol probes to track cholesterol distribution in model membranes.
    Ramirez DM; Ogilvie WW; Johnston LJ
    Biochim Biophys Acta; 2010 Mar; 1798(3):558-68. PubMed ID: 20026044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.