BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34928061)

  • 81. Measuring raft size as a function of membrane composition in PC-based systems: Part II--ternary systems.
    Brown AC; Towles KB; Wrenn SP
    Langmuir; 2007 Oct; 23(22):11188-96. PubMed ID: 17887779
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cholesterol reporter molecules.
    Gimpl G; Gehrig-Burger K
    Biosci Rep; 2007 Dec; 27(6):335-58. PubMed ID: 17668316
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Membrane Lipid Nanodomains.
    Cebecauer M; Amaro M; Jurkiewicz P; Sarmento MJ; Šachl R; Cwiklik L; Hof M
    Chem Rev; 2018 Dec; 118(23):11259-11297. PubMed ID: 30362705
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins.
    Kinoshita M; Suzuki KGN; Murata M; Matsumori N
    Chem Phys Lipids; 2018 Sep; 215():84-95. PubMed ID: 30005889
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Nanoscale imaging of domains in supported lipid membranes.
    Johnston LJ
    Langmuir; 2007 May; 23(11):5886-95. PubMed ID: 17428076
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Lipid Membrane Deformation Accompanied by Disk-to-Ring Shape Transition of Cholesterol-Rich Domains.
    Ryu YS; Yoo D; Wittenberg NJ; Jordan LR; Lee SD; Parikh AN; Oh SH
    J Am Chem Soc; 2015 Jul; 137(27):8692-5. PubMed ID: 26053547
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fluorescence sensors for imaging membrane lipid domains and cholesterol.
    Barrantes FJ
    Curr Top Membr; 2021; 88():257-314. PubMed ID: 34862029
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids.
    Sahl SJ; Leutenegger M; Hilbert M; Hell SW; Eggeling C
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6829-34. PubMed ID: 20351247
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Role of cholesterol in lipid raft formation: lessons from lipid model systems.
    Silvius JR
    Biochim Biophys Acta; 2003 Mar; 1610(2):174-83. PubMed ID: 12648772
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Thermodynamic properties and characterization of proteoliposomes rich in microdomains carrying alkaline phosphatase.
    Bolean M; Simão AM; Favarin BZ; Millán JL; Ciancaglini P
    Biophys Chem; 2011 Oct; 158(2-3):111-8. PubMed ID: 21676530
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Material properties of lipid microdomains: force-volume imaging study of the effect of cholesterol on lipid microdomain rigidity.
    An H; Nussio MR; Huson MG; Voelcker NH; Shapter JG
    Biophys J; 2010 Aug; 99(3):834-44. PubMed ID: 20682261
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Topographic control of lipid-raft reconstitution in model membranes.
    Yoon TY; Jeong C; Lee SW; Kim JH; Choi MC; Kim SJ; Kim MW; Lee SD
    Nat Mater; 2006 Apr; 5(4):281-5. PubMed ID: 16565710
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Structure and dynamics of nano-sized raft-like domains on the plasma membrane.
    Herrera FE; Pantano S
    J Chem Phys; 2012 Jan; 136(1):015103. PubMed ID: 22239803
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Biochemical and imaging methods to study receptor membrane organization and association with lipid rafts.
    Castro BM; Torreno-Piña JA; van Zanten TS; Gracia-Parajo MF
    Methods Cell Biol; 2013; 117():105-22. PubMed ID: 24143974
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The desmosome as a model for lipid raft driven membrane domain organization.
    Zimmer SE; Kowalczyk AP
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183329. PubMed ID: 32376221
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered.
    Koukalová A; Amaro M; Aydogan G; Gröbner G; Williamson PTF; Mikhalyov I; Hof M; Šachl R
    Sci Rep; 2017 Jul; 7(1):5460. PubMed ID: 28710349
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Super-resolution fluorescence microscopy studies of human immunodeficiency virus.
    Chojnacki J; Eggeling C
    Retrovirology; 2018 Jun; 15(1):41. PubMed ID: 29884197
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Dances with Membranes: Breakthroughs from Super-resolution Imaging.
    Curthoys NM; Parent M; Mlodzianoski M; Nelson AJ; Lilieholm J; Butler MB; Valles M; Hess ST
    Curr Top Membr; 2015; 75():59-123. PubMed ID: 26015281
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Correlative nanophotonic approaches to enlighten the nanoscale dynamics of living cell membranes.
    Winkler PM; García-Parajo MF
    Biochem Soc Trans; 2021 Nov; 49(5):2357-2369. PubMed ID: 34495333
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A critical survey of methods to detect plasma membrane rafts.
    Klotzsch E; Schütz GJ
    Philos Trans R Soc Lond B Biol Sci; 2013 Feb; 368(1611):20120033. PubMed ID: 23267184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.