These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 34928132)

  • 1. Water- and Acid-Sensitive Cu
    Li H; Luo S; Zhang L; Zhao Z; Wu M; Li W; Liu FQ
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1910-1920. PubMed ID: 34928132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Enhanced Antibacterial and Antifouling Behavior of Three-Dimensional Porous Cu
    Li H; Zhang L; Zhang X; Zhu G; Zheng D; Luo S; Wu M; Li WH; Liu FQ
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38808-38820. PubMed ID: 37526484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper Tannic Acid-Coordinated Metal-Organic Nanosheets for Synergistic Antimicrobial and Antifouling Coatings.
    Li J; Li J; Wei J; Zhu X; Qiu S; Zhao H
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10446-10456. PubMed ID: 33617228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Concomitant Formation Method for Fabrication of Cu(I)-MOF/Polymer Composites with Antifouling Properties.
    He W; Li X; Dai X; Shao L; Fu Y; Xu D; Qi W
    Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202411539. PubMed ID: 39034298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles.
    Yang Z; Hao X; Chen S; Ma Z; Wang W; Wang C; Yue L; Sun H; Shao Q; Murugadoss V; Guo Z
    J Colloid Interface Sci; 2019 Jan; 533():13-23. PubMed ID: 30144689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new MOF@bioactive glass composite reinforced with silver nanoparticles - a new approach to designing antibacterial biomaterials.
    Fandzloch M; Augustyniak AW; Trzcińska-Wencel J; Golińska P; Roszek K
    Dalton Trans; 2024 Jul; 53(26):10928-10937. PubMed ID: 38888155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior antibacterial activity of Fe
    Zhang S; Ye J; Liu Z; Lu H; Shi S; Qi Y; Ning G
    Dalton Trans; 2020 Oct; 49(37):13044-13051. PubMed ID: 32915182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic antibacterial effect and mechanism between Cu
    Xiao H; Zhou S
    Colloids Surf B Biointerfaces; 2024 Jun; 238():113914. PubMed ID: 38663310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.
    M El Saeed A; Abd El-Fattah M; Azzam AM; Dardir MM; Bader MM
    Int J Biol Macromol; 2016 Aug; 89():190-7. PubMed ID: 27103492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of size-controlled nano-Cu
    Zhou J; Wang C; Cunningham AJ; Hu Z; Xiang H; Sun B; Zuo W; Zhu M
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():499-504. PubMed ID: 31029344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun pectin/modified copper-based metal-organic framework (MOF) nanofibers as a drug delivery system.
    Zirak Hassan Kiadeh S; Ghaee A; Farokhi M; Nourmohammadi J; Bahi A; Ko FK
    Int J Biol Macromol; 2021 Mar; 173():351-365. PubMed ID: 33450340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver and Copper Nanoparticle-Loaded Self-Assembled Pseudo-Peptide Thiourea-Based Organic-Inorganic Hybrid Gel with Antibacterial and Superhydrophobic Properties for Antifouling Surfaces.
    Devi R; Singh G; Singh A; Singh J; Kaur N; Singh N
    ACS Appl Bio Mater; 2024 Jun; 7(6):4162-4174. PubMed ID: 38769764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A NH
    Li Z; Cheng J; Xie Z; Chen L
    Sci Rep; 2024 Oct; 14(1):23656. PubMed ID: 39390073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transfer channels of silver @ cuprous oxide heterostructure core-shell nanoparticles strengthen high photocatalytic antibacterial activity.
    Feng H; Wang W; Wang W; Zhang M; Wang C; Ma C; Li W; Chen S
    J Colloid Interface Sci; 2021 Nov; 601():531-543. PubMed ID: 34090030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifouling Property of Cu
    Wang X; Yang J; Liu Z; Jiang X; Yu L
    Langmuir; 2022 Aug; 38(33):10244-10255. PubMed ID: 35968997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Core-Sheath Cu/Cu
    Zhou W; Fu L; Zhao L; Xu X; Li W; Wen M; Wu Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10878-10890. PubMed ID: 33635062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper oxide(I) nanoparticle-modified cellulose acetate membranes with enhanced antibacterial and antifouling properties.
    Woźniak-Budych M; Zgórzyńska U; Przysiecka Ł; Załęski K; Jarek M; Jancelewicz M; Domke A; Iatsunskyi I; Nowaczyk G; Staszak K; Wieczorek D; Tylkowski B
    Environ Res; 2024 Jul; 252(Pt 3):119068. PubMed ID: 38705452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and synergistic antifouling effect of self-renewable coatings containing quaternary ammonium-functionalized SiO
    Wang D; Xu J; Yang J; Zhou S
    J Colloid Interface Sci; 2020 Mar; 563():261-271. PubMed ID: 31884250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pegylated Metal-Phenolic Networks for Antimicrobial and Antifouling Properties.
    Zheng HT; Bui HL; Chakroborty S; Wang Y; Huang CJ
    Langmuir; 2019 Jul; 35(26):8829-8839. PubMed ID: 31177783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Ag-MOF Growth on Pre-Grafted Zwitterions Imparts Outstanding Antifouling Properties to Forward Osmosis Membranes.
    Pejman M; Dadashi Firouzjaei M; Aghapour Aktij S; Das P; Zolghadr E; Jafarian H; Arabi Shamsabadi A; Elliott M; Sadrzadeh M; Sangermano M; Rahimpour A; Tiraferri A
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36287-36300. PubMed ID: 32677425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.