These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34928538)

  • 1. Deciphering the physiological response of Escherichia coli under high ATP demand.
    Boecker S; Slaviero G; Schramm T; Szymanski W; Steuer R; Link H; Klamt S
    Mol Syst Biol; 2021 Dec; 17(12):e10504. PubMed ID: 34928538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation.
    Thomas S; Fell DA
    Eur J Biochem; 1998 Dec; 258(3):956-67. PubMed ID: 9990313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glycolytic flux in Escherichia coli is controlled by the demand for ATP.
    Koebmann BJ; Westerhoff HV; Snoep JL; Nilsson D; Jensen PR
    J Bacteriol; 2002 Jul; 184(14):3909-16. PubMed ID: 12081962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights on transcriptional responses of genes involved in carbon central metabolism, respiration and fermentation to low ATP levels in Escherichia coli.
    Soria S; de Anda R; Flores N; Romero-Garcia S; Gosset G; Bolívar F; Báez-Viveros JL
    J Basic Microbiol; 2013 Apr; 53(4):365-80. PubMed ID: 22914992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth.
    Koebmann BJ; Westerhoff HV; Snoep JL; Solem C; Pedersen MB; Nilsson D; Michelsen O; Jensen PR
    Mol Biol Rep; 2002; 29(1-2):41-5. PubMed ID: 12241072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.
    Epstein T; Xu L; Gillies RJ; Gatenby RA
    Cancer Metab; 2014; 2():7. PubMed ID: 24982758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon and energy metabolism of atp mutants of Escherichia coli.
    Jensen PR; Michelsen O
    J Bacteriol; 1992 Dec; 174(23):7635-41. PubMed ID: 1447134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reexamination of the Physiological Role of PykA in Escherichia coli Revealed that It Negatively Regulates the Intracellular ATP Levels under Anaerobic Conditions.
    Zhao C; Lin Z; Dong H; Zhang Y; Li Y
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate.
    Utrilla J; Gosset G; Martinez A
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1057-62. PubMed ID: 19471981
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Zhang W; Chen X; Sun W; Nie T; Quanquin N; Sun Y
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32854287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring and modeling energy and power consumption in living microbial cells with a synthetic ATP reporter.
    Deng Y; Beahm DR; Ionov S; Sarpeshkar R
    BMC Biol; 2021 May; 19(1):101. PubMed ID: 34001118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli.
    Boecker S; Zahoor A; Schramm T; Link H; Klamt S
    Biotechnol J; 2019 Sep; 14(9):e1800438. PubMed ID: 30927494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decrease of energy spilling in Escherichia coli continuous cultures with rising specific growth rate and carbon wasting.
    Valgepea K; Adamberg K; Vilu R
    BMC Syst Biol; 2011 Jul; 5():106. PubMed ID: 21726468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data.
    Toya Y; Nakahigashi K; Tomita M; Shimizu K
    Mol Biosyst; 2012 Oct; 8(10):2593-604. PubMed ID: 22790675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress.
    Gigliobianco T; Lakaye B; Wins P; El Moualij B; Zorzi W; Bettendorff L
    BMC Microbiol; 2010 May; 10():148. PubMed ID: 20492686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Analysis of Deoxyhexose Sugar Utilization in Escherichia coli Reveals Fermentative Metabolism under Aerobic Conditions.
    Millard P; Pérochon J; Létisse F
    Appl Environ Microbiol; 2021 Jul; 87(16):e0071921. PubMed ID: 34047632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of glycolytic flux control intrinsic to human phosphoglycerate kinase.
    Yagi H; Kasai T; Rioual E; Ikeya T; Kigawa T
    Proc Natl Acad Sci U S A; 2021 Dec; 118(50):. PubMed ID: 34893542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of cellular energy metabolism: the Crabtree effect.
    Sussman I; Erecińska M; Wilson DF
    Biochim Biophys Acta; 1980 Jul; 591(2):209-23. PubMed ID: 7397121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.
    Wang Q; Ou MS; Kim Y; Ingram LO; Shanmugam KT
    Appl Environ Microbiol; 2010 Apr; 76(7):2107-14. PubMed ID: 20118372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by
    Gonzalez JE; Long CP; Antoniewicz MR
    Metab Eng; 2017 Jan; 39():9-18. PubMed ID: 27840237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.