These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Chomvong K; Benjamin DI; Nomura DK; Cate JHD mBio; 2017 Aug; 8(4):. PubMed ID: 28790206 [TBL] [Abstract][Full Text] [Related]
44. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. Larsson C; Nilsson A; Blomberg A; Gustafsson L J Bacteriol; 1997 Dec; 179(23):7243-50. PubMed ID: 9393686 [TBL] [Abstract][Full Text] [Related]
45. Fermentative glycolysis with purified Escherichia coli enzymes for in vitro ATP production and evaluating an engineered enzyme. Stevenson BJ; Liu JW; Kuchel PW; Ollis DL J Biotechnol; 2012 Jan; 157(1):113-23. PubMed ID: 21963590 [TBL] [Abstract][Full Text] [Related]
46. Increasing the Thermodynamic Driving Force of the Phosphofructokinase Reaction in Hon S; Jacobson T; Stevenson DM; Maloney MI; Giannone RJ; Hettich RL; Amador-Noguez D; Olson DG; Lynd LR Appl Environ Microbiol; 2022 Nov; 88(22):e0125822. PubMed ID: 36286488 [TBL] [Abstract][Full Text] [Related]
47. Balanced contribution of glycolytic and adenylate pool in supply of metabolic energy in platelets. Verhoeven AJ; Mommersteeg ME; Akkerman JW J Biol Chem; 1985 Mar; 260(5):2621-4. PubMed ID: 3972799 [TBL] [Abstract][Full Text] [Related]
48. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System. Luo Z; Zeng W; Du G; Chen J; Zhou J ACS Synth Biol; 2019 Apr; 8(4):787-795. PubMed ID: 30856339 [TBL] [Abstract][Full Text] [Related]
49. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. He L; Xiao Y; Gebreselassie N; Zhang F; Antoniewiez MR; Tang YJ; Peng L Biotechnol Bioeng; 2014 Mar; 111(3):575-85. PubMed ID: 24122357 [TBL] [Abstract][Full Text] [Related]
50. Metabolic engineering of Escherichia coli for L-malate production anaerobically. Jiang Y; Zheng T; Ye X; Xin F; Zhang W; Dong W; Ma J; Jiang M Microb Cell Fact; 2020 Aug; 19(1):165. PubMed ID: 32811486 [TBL] [Abstract][Full Text] [Related]
51. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Long CP; Gonzalez JE; Feist AM; Palsson BO; Antoniewicz MR Proc Natl Acad Sci U S A; 2018 Jan; 115(1):222-227. PubMed ID: 29255023 [TBL] [Abstract][Full Text] [Related]
52. Regulation of the energy metabolism of Plasmodium berghei. Jacobasch G; Buckwitz D; Gerth C; Thamm R Biomed Biochim Acta; 1990; 49(2-3):S289-94. PubMed ID: 2143651 [TBL] [Abstract][Full Text] [Related]
53. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism? Cohen JJ Am J Physiol; 1979 May; 236(5):F423-33. PubMed ID: 220881 [TBL] [Abstract][Full Text] [Related]
54. Impaired aerobic glycolysis in muscle phosphofructokinase deficiency results in biphasic post-exercise phosphocreatine recovery in 31P magnetic resonance spectroscopy. Grehl T; Müller K; Vorgerd M; Tegenthoff M; Malin JP; Zange J Neuromuscul Disord; 1998 Oct; 8(7):480-8. PubMed ID: 9829278 [TBL] [Abstract][Full Text] [Related]
55. Glycolytic strategy as a tradeoff between energy yield and protein cost. Flamholz A; Noor E; Bar-Even A; Liebermeister W; Milo R Proc Natl Acad Sci U S A; 2013 Jun; 110(24):10039-44. PubMed ID: 23630264 [TBL] [Abstract][Full Text] [Related]
56. Application of hybrid plasmids carrying glycolysis genes to ATP production by Escherichia coli. Shimosaka M; Fukuda Y; Murata K; Kimura A J Bacteriol; 1982 Oct; 152(1):98-103. PubMed ID: 6214548 [TBL] [Abstract][Full Text] [Related]
57. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Winkler BS; Arnold MJ; Brassell MA; Sliter DR Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631 [TBL] [Abstract][Full Text] [Related]
58. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. Epstein T; Gatenby RA; Brown JS PLoS One; 2017; 12(9):e0185085. PubMed ID: 28922380 [TBL] [Abstract][Full Text] [Related]
59. Regulation of glycogen synthesis and glucose utilization in Escherichia coli during maintenance of the energy charge. Quantitative correlation of changes in the rates of glycogen synthesis and glucose utilization with simultaneous changes in the cellular levels of both glucose 6-phosphate and fructose 1,6-diphosphate. Dietzler DN; Leckie MP; Sternheim WL; Ungar JM; Crimmins DL; Lewis JW J Biol Chem; 1979 Sep; 254(17):8276-87. PubMed ID: 381301 [TBL] [Abstract][Full Text] [Related]
60. Energy buffering of DNA structure fails when Escherichia coli runs out of substrate. Jensen PR; Loman L; Petra B; van der Weijden C; Westerhoff HV J Bacteriol; 1995 Jun; 177(12):3420-6. PubMed ID: 7768851 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]