These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34928538)
61. Astrocyte glucose metabolism under normal and pathological conditions in vitro. Swanson RA; Benington JH Dev Neurosci; 1996; 18(5-6):515-21. PubMed ID: 8940626 [TBL] [Abstract][Full Text] [Related]
62. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Jong YS; Davis EJ Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674 [TBL] [Abstract][Full Text] [Related]
63. Glycolytic oscillations in a model of a lactic acid bacterium metabolism. Levering J; Kummer U; Becker K; Sahle S Biophys Chem; 2013 Feb; 172():53-60. PubMed ID: 23357412 [TBL] [Abstract][Full Text] [Related]
64. Metabolism: demand management in cells. Oliver S Nature; 2002 Jul; 418(6893):33-4. PubMed ID: 12097896 [No Abstract] [Full Text] [Related]
65. Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart. Peoples JNR; Maxmillian T; Le Q; Nadtochiy SM; Brookes PS; Porter GA; Davidson VL; Ebert SN J Biol Chem; 2018 May; 293(18):6925-6941. PubMed ID: 29540484 [TBL] [Abstract][Full Text] [Related]
66. Selection for rapid uptake of scarce or fluctuating resource explains vulnerability of glycolysis to imbalance. Janulevicius A; van Doorn GS PLoS Comput Biol; 2021 Jan; 17(1):e1008547. PubMed ID: 33465070 [TBL] [Abstract][Full Text] [Related]
68. Systematic genome-wide scanning for genes involved in ATP generation in Escherichia coli. Hara KY; Shimodate N; Ito M; Baba T; Mori H; Mori H Metab Eng; 2009 Jan; 11(1):1-7. PubMed ID: 18718549 [TBL] [Abstract][Full Text] [Related]
69. Comparative energetics of glucose and xylose metabolism in ethanologenic recombinant Escherichia coli B. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 1995; 51-52():179-95. PubMed ID: 7668846 [TBL] [Abstract][Full Text] [Related]
70. Increased demand for NAD Luengo A; Li Z; Gui DY; Sullivan LB; Zagorulya M; Do BT; Ferreira R; Naamati A; Ali A; Lewis CA; Thomas CJ; Spranger S; Matheson NJ; Vander Heiden MG Mol Cell; 2021 Feb; 81(4):691-707.e6. PubMed ID: 33382985 [TBL] [Abstract][Full Text] [Related]
71. Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli. I. Quantitative covariance of the rate of glucose utilization and the cellular level of fructose 1,6-diphosphate during exponential growth and nutrient limitation. Dietzler DN; Leckie MP; Bergstein PE; Sughrue MJ J Biol Chem; 1975 Sep; 250(18):7188-93. PubMed ID: 1100622 [TBL] [Abstract][Full Text] [Related]
72. Stabilization of a proteolytically sensitive cytoplasmic recombinant protein during transition to downstream processing. Rozkov A; Enfors SO Biotechnol Bioeng; 1999 Mar; 62(6):730-8. PubMed ID: 9951528 [TBL] [Abstract][Full Text] [Related]
73. Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli. Wittmann C; Weber J; Betiku E; Krömer J; Böhm D; Rinas U J Biotechnol; 2007 Dec; 132(4):375-84. PubMed ID: 17689798 [TBL] [Abstract][Full Text] [Related]
74. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Shimizu K; Matsuoka Y Biotechnol Adv; 2019; 37(2):284-305. PubMed ID: 30576718 [TBL] [Abstract][Full Text] [Related]
75. Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli. Schuhmacher T; Löffler M; Hurler T; Takors R J Biotechnol; 2014 Nov; 190():96-104. PubMed ID: 24833421 [TBL] [Abstract][Full Text] [Related]
76. Untargeted Metabolomics Reveals Anaerobic Glycolysis as a Novel Target of the Hepatotoxic Antidepressant Nefazodone. Krajnc E; Visentin M; Gai Z; Stieger B; Samodelov SL; Häusler S; Kullak-Ublick GA J Pharmacol Exp Ther; 2020 Nov; 375(2):239-246. PubMed ID: 32848075 [TBL] [Abstract][Full Text] [Related]
77. Metabolic Tug-of-War between Glycolysis and Translation Revealed by Biochemical Reconstitution. Sato G; Kinoshita S; Yamada TG; Arai S; Kitaguchi T; Funahashi A; Doi N; Fujiwara K ACS Synth Biol; 2024 May; 13(5):1572-1581. PubMed ID: 38717981 [TBL] [Abstract][Full Text] [Related]
78. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894 [TBL] [Abstract][Full Text] [Related]
79. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Larsson C; Påhlman IL; Gustafsson L Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904 [TBL] [Abstract][Full Text] [Related]
80. Substrate antagonism in the kinetic mechanism of E. coli phosphofructokinase-1. Deville-Bonne D; Laine R; Garel JR FEBS Lett; 1991 Sep; 290(1-2):173-6. PubMed ID: 1833241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]