BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34928587)

  • 1. Diffusion Attachment Model for Long Helical Antifreeze Proteins to Ice.
    Kamat K; Naullage PM; Molinero V; Peters B
    Biomacromolecules; 2022 Feb; 23(2):513-519. PubMed ID: 34928587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented attachment kinetics for rod-like particles at a flat surface: Buffon's needle at the nanoscale.
    Kamat K; Naullage PM; Molinero V; Peters B
    J Chem Phys; 2022 Dec; 157(21):214113. PubMed ID: 36511557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of Antifreeze Proteins on Ice Is Determined by Adsorption.
    Thosar AU; Shalom Y; Braslavsky I; Drori R; Patel AJ
    J Am Chem Soc; 2023 Aug; 145(32):17597-17602. PubMed ID: 37527507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ice-binding site of antifreeze protein irreversibly binds to cell surface for its hypothermic protective function.
    Yang Y; Yamauchi A; Tsuda S; Kuramochi M; Mio K; Sasaki YC; Arai T
    Biochem Biophys Res Commun; 2023 Nov; 682():343-348. PubMed ID: 37837755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption Kinetics of Type-III Antifreeze Protein on Ice Crystal Surfaces.
    Vorontsov DA; Sazaki G; Furukawa Y; Titaeva EK; Kim EL
    Langmuir; 2023 Jun; 39(25):8612-8622. PubMed ID: 37294179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engulfment Avalanches and Thermal Hysteresis for Antifreeze Proteins on Supercooled Ice.
    Farag H; Peters B
    J Phys Chem B; 2023 Jun; 127(24):5422-5431. PubMed ID: 37294871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces.
    Pertaya N; Marshall CB; DiPrinzio CL; Wilen L; Thomson ES; Wettlaufer JS; Davies PL; Braslavsky I
    Biophys J; 2007 May; 92(10):3663-73. PubMed ID: 17325008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein engineering of antifreeze proteins reveals that their activity scales with the area of the ice-binding site.
    Scholl CL; Davies PL
    FEBS Lett; 2023 Feb; 597(4):538-546. PubMed ID: 36460826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition.
    Mao Y; Ba Y
    J Chem Phys; 2006 Sep; 125(9):091102. PubMed ID: 16965064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-range, water-mediated interaction between a moderately active antifreeze protein molecule and the surface of ice.
    Grabowska J; Kuffel A; Zielkiewicz J
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38445741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structure of a hyperactive antifreeze protein adsorbed to ice.
    Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ
    J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.
    Basu K; Garnham CP; Nishimiya Y; Tsuda S; Braslavsky I; Davies P
    J Vis Exp; 2014 Jan; (83):e51185. PubMed ID: 24457629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended Temperature Range of the Ice-Binding Protein Activity.
    Sirotinskaya V; Bar Dolev M; Yashunsky V; Bahari L; Braslavsky I
    Langmuir; 2024 Apr; 40(14):7395-7404. PubMed ID: 38527127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifreeze Glycoproteins Bind Irreversibly to Ice.
    Meister K; DeVries AL; Bakker HJ; Drori R
    J Am Chem Soc; 2018 Aug; 140(30):9365-9368. PubMed ID: 30028137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscopy of single antifreeze proteins reveals that reversible ice binding is sufficient for ice recrystallization inhibition but not thermal hysteresis.
    Tas RP; Hendrix MMRM; Voets IK
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2212456120. PubMed ID: 36595705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source of the ice-binding specificity of antifreeze protein type I.
    Dalal P; Sönnichsen FD
    J Chem Inf Comput Sci; 2000; 40(5):1276-84. PubMed ID: 11045824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of antifreeze peptides in shrimp byproducts autolysate using peptidomics and bioinformatics.
    Zhu K; Zheng Z; Dai Z
    Food Chem; 2022 Jul; 383():132568. PubMed ID: 35255363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.