These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34929012)

  • 1. Video-based quantification of human movement frequency using pose estimation: A pilot study.
    Cornman HL; Stenum J; Roemmich RT
    PLoS One; 2021; 16(12):e0261450. PubMed ID: 34929012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning for hand tracking in Parkinson's Disease video-based assessment: Current and future perspectives.
    Amprimo G; Masi G; Olmo G; Ferraris C
    Artif Intell Med; 2024 Jun; 154():102914. PubMed ID: 38909431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The discerning eye of computer vision: Can it measure Parkinson's finger tap bradykinesia?
    Williams S; Zhao Z; Hafeez A; Wong DC; Relton SD; Fang H; Alty JE
    J Neurol Sci; 2020 Sep; 416():117003. PubMed ID: 32645513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Implementation of the Edinburgh Visual Gait Score (EVGS) Using OpenPose and Handheld Smartphone Video.
    Ramesh SH; Lemaire ED; Tu A; Cheung K; Baddour N
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for the quantification of key components of manual dexterity after stroke.
    Térémetz M; Colle F; Hamdoun S; Maier MA; Lindberg PG
    J Neuroeng Rehabil; 2015 Aug; 12():64. PubMed ID: 26233571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving towards intelligent telemedicine: Computer vision measurement of human movement.
    Li R; St George RJ; Wang X; Lawler K; Hill E; Garg S; Williams S; Relton S; Hogg D; Bai Q; Alty J
    Comput Biol Med; 2022 Aug; 147():105776. PubMed ID: 35780600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel tablet-based application for assessment of manual dexterity and its components: a reliability and validity study in healthy subjects.
    Rabah A; Le Boterff Q; Carment L; Bendjemaa N; Térémetz M; Dupin L; Cuenca M; Mas JL; Krebs MO; Maier MA; Lindberg PG
    J Neuroeng Rehabil; 2022 Mar; 19(1):35. PubMed ID: 35331273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional video-based analysis of human gait using pose estimation.
    Stenum J; Rossi C; Roemmich RT
    PLoS Comput Biol; 2021 Apr; 17(4):e1008935. PubMed ID: 33891585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated video exposure assessment of repetitive hand activity level for a load transfer task.
    Chen CH; Hu YH; Yen TY; Radwin RG
    Hum Factors; 2013 Apr; 55(2):298-308. PubMed ID: 23691826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the abilities of individual fingers during the performance of fast, repetitive tapping movements.
    Aoki T; Francis PR; Kinoshita H
    Exp Brain Res; 2003 Sep; 152(2):270-80. PubMed ID: 12898096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the observer, single-frame video and computer vision hand activity levels.
    Radwin RG; Hu YH; Akkas O; Bao S; Harris-Adamson C; Lin JH; Meyers AR; Rempel D
    Ergonomics; 2023 Aug; 66(8):1132-1141. PubMed ID: 36227226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-supervised spatio-temporal attention network for video-based 3D infant pose estimation.
    Yin W; Chen L; Huang X; Huang C; Wang Z; Bian Y; Wan Y; Zhou Y; Han T; Yi M
    Med Image Anal; 2024 Aug; 96():103208. PubMed ID: 38788327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Pose Estimation in Human Health and Performance across the Lifespan.
    Stenum J; Cherry-Allen KM; Pyles CO; Reetzke RD; Vignos MF; Roemmich RT
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of two-dimensional video-based inference of finger kinematics with pose estimation.
    Gionfrida L; Rusli WMR; Bharath AA; Kedgley AE
    PLoS One; 2022; 17(11):e0276799. PubMed ID: 36327291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SARN: Shifted Attention Regression Network for 3D Hand Pose Estimation.
    Zhu C; Hu B; Chen J; Ai X; Agrawal SK
    Bioengineering (Basel); 2023 Jan; 10(2):. PubMed ID: 36829620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between pose estimation features regarding movements towards the midline in early infancy.
    Sermpon N; Gima H
    PLoS One; 2024; 19(2):e0299758. PubMed ID: 38416738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated pose estimation captures key aspects of General Movements at eight to 17 weeks from conventional videos.
    Marchi V; Hakala A; Knight A; D'Acunto F; Scattoni ML; Guzzetta A; Vanhatalo S
    Acta Paediatr; 2019 Oct; 108(10):1817-1824. PubMed ID: 30883894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion Tracker: Camera-Based Monitoring of Bodily Movements Using Motion Silhouettes.
    Kory Westlund J; D'Mello SK; Olney AM
    PLoS One; 2015; 10(6):e0130293. PubMed ID: 26086771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of finger-tapping movement.
    Jobbágy A; Harcos P; Karoly R; Fazekas G
    J Neurosci Methods; 2005 Jan; 141(1):29-39. PubMed ID: 15585286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining inertial sensors and optical flow to assess finger movements: Pilot study for telehealth applications.
    Zumaeta K; Romero SE; Torres E; Urdiales L; Ramirez A; Camargo I; Lizarraga KJ; Castaneda B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2409-2412. PubMed ID: 34891767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.