BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 3492922)

  • 1. Cation dependence of posttetanic potentiation of neuromuscular transmission.
    Misler S; Falke L; Martin S
    Am J Physiol; 1987 Jan; 252(1 Pt 1):C55-62. PubMed ID: 3492922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic basis of tetanic and post-tetanic potentiation at a mammalian neuromuscular junction.
    Nussinovitch I; Rahamimoff R
    J Physiol; 1988 Feb; 396():435-55. PubMed ID: 2457692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of black widow spider venom on quantized release of acetylcholine at the frog neuromuscular junction: dependence upon external Mg2+.
    Misler S; Hurlbut WP
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):991-5. PubMed ID: 311479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tests of an electrostatic screening hypothesis of the inhibition of neurotransmitter release by cations at the frog neuromuscular junction.
    Misler S; Hurlbut WP
    Biophys J; 1980 Jul; 31(1):9-30. PubMed ID: 6115687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium dependence of evoked transmitter release at very low quantal contents at the frog neuromuscular junction.
    Andreu R; Barrett EF
    J Physiol; 1980 Nov; 308():79-97. PubMed ID: 6112267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation.
    Pawson PA; Grinnell AD
    J Neurosci; 1990 Jun; 10(6):1769-78. PubMed ID: 2113085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence on multivalent cations of quantal release of transmitter induced by black widow spider venom.
    Misler S; Falke LC
    Am J Physiol; 1987 Sep; 253(3 Pt 1):C469-76. PubMed ID: 2888313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of Ba2+, Sr2+, and Ca2+ on stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1980 Aug; 76(2):175-211. PubMed ID: 6967950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttetanic potentiation in strong and weak neuromuscular junctions: physiological differences caused by a differential Ca2+-influx.
    Pawson PA; Grinnell AD
    Brain Res; 1984 Dec; 323(2):311-5. PubMed ID: 6098343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification by lithium of transmitter release at the neuromuscular junction of the frog.
    Branisteanu DD; Volle RL
    J Pharmacol Exp Ther; 1975 Aug; 194(2):362-72. PubMed ID: 239225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface charges and the effects of calcium on the frequency of miniature end-plate potentials at the frog neuromuscular junction.
    Madden KS; Van der Kloot W
    J Physiol; 1978 Mar; 276():227-32. PubMed ID: 306431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation.
    Mulkey RM; Zucker RS
    J Neurosci; 1992 Nov; 12(11):4327-36. PubMed ID: 1432097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of tetanic and post-tetanic potentiation of miniature end-plate potentials at the frog neuromuscular junction.
    Lev-Tov A; Rahamimoff R
    J Physiol; 1980 Dec; 309():247-73. PubMed ID: 6973021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of physiologic alterations on binomial transmitter release at magnesium-depressed neuromuscular junctions.
    Branisteanu DD; Miyamoto MD; Volle RL
    J Physiol; 1976 Jan; 254(1):19-37. PubMed ID: 175150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in miniature end-plate currents due to high potassium and calcium at the frog neuromuscular junction.
    Glavinović MI
    Synapse; 1988; 2(6):636-43. PubMed ID: 3264941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course and magnitude of effects of changes in tonicity on acetylcholine release at frog neuromuscular junction.
    Kita H; van der Kloot W
    J Neurophysiol; 1977 Mar; 40(2):212-24. PubMed ID: 300428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of extracellular H+, Na+, Ca2+ and Sr2+ on the decay of miniature end-plate currents.
    Cohen I; Van der Kloot W
    Brain Res; 1982 Jun; 241(2):285-90. PubMed ID: 6980690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equivalence of Ca2+ and Sr2+ in transmitter release from K+-depolarised nerve terminals.
    Mellow AM
    Nature; 1979 Nov; 282(5734):84-5. PubMed ID: 41184
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of 2-(4-phenylpiperidino)cyclohexanol (AH5183) and barium ions on frog neuromuscular transmission.
    Maeno T; Shibuya Y
    J Physiol; 1988 Jul; 401():671-85. PubMed ID: 2845067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How elevated extracellular Ca2+ inhibits quantal acetylcholine release at frog neuromuscular junctions in high K+.
    Van der Kloot W; Latta R
    Pflugers Arch; 1983 Apr; 397(2):85-9. PubMed ID: 6408607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.