These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34929329)

  • 21. Microbial electrolysis cells for waste biorefinery: A state of the art review.
    Lu L; Ren ZJ
    Bioresour Technol; 2016 Sep; 215():254-264. PubMed ID: 27020129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges.
    Zhang Y; Angelidaki I
    Water Res; 2014 Jun; 56():11-25. PubMed ID: 24631941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrophilic porous materials provide efficient gas-liquid separation to advance hydrogen production in microbial electrolysis cells.
    Zhao N; Liang D; Li X; Meng S; Liu H
    Bioresour Technol; 2021 Oct; 337():125352. PubMed ID: 34098503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation and ranking of polymeric ion exchange membranes used in microbial electrolysis cells for biohydrogen production.
    Cardeña R; Koók L; Žitka J; Bakonyi P; Galajdová B; Otmar M; Nemestóthy N; Buitrón G
    Bioresour Technol; 2021 Jan; 319():124182. PubMed ID: 33038653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production.
    Rivera I; Bakonyi P; Cuautle-Marín MA; Buitrón G
    Chemosphere; 2017 May; 174():253-259. PubMed ID: 28171841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of gas atmosphere on hydrogen production in microbial electrolysis cells.
    Cui H; Yang Y; Wang J; Lou Y; Fang A; Liu B; Xie G; Xing D
    Sci Total Environ; 2021 Feb; 756():144154. PubMed ID: 33310211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of nickle, nickle-cobalt and nickle-cobalt-phosphorus nanocatalysts for enhancing biohydrogen production in microbial electrolysis cells using paper industry wastewater.
    Chaurasia AK; Shankar R; Mondal P
    J Environ Manage; 2021 Nov; 298():113542. PubMed ID: 34426219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode.
    Cai W; Liu W; Han J; Wang A
    Biosens Bioelectron; 2016 Jun; 80():118-122. PubMed ID: 26807526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.
    Yuan H; He Z
    Chem Rec; 2017 Jul; 17(7):641-652. PubMed ID: 28375578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced photo-fermentative biohydrogen production from biowastes: An overview.
    Cheng D; Ngo HH; Guo W; Chang SW; Nguyen DD; Bui XT; Wei W; Ni B; Varjani S; Hoang NB
    Bioresour Technol; 2022 Aug; 357():127341. PubMed ID: 35605780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
    Call D; Logan BE
    Environ Sci Technol; 2008 May; 42(9):3401-6. PubMed ID: 18522125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells.
    Park SG; Rhee C; Jadhav DA; Eisa T; Al-Mayyahi RB; Shin SG; Abdelkareem MA; Chae KJ
    Sci Total Environ; 2023 Jan; 856(Pt 1):159105. PubMed ID: 36181811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scaling-up up-flow microbial electrolysis cells with a compact electrode configuration for continuous hydrogen production.
    Singh L; Miller AG; Wang L; Liu H
    Bioresour Technol; 2021 Jul; 331():125030. PubMed ID: 33823486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations.
    Escapa A; San-Martín MI; Mateos R; Morán A
    Bioresour Technol; 2015 Mar; 180():72-8. PubMed ID: 25590425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient H
    Song S; Huang L; Zhou P
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):391-404. PubMed ID: 36413265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen.
    Chae KJ; Choi MJ; Kim KY; Ajayi FF; Chang IS; Kim IS
    Environ Sci Technol; 2009 Dec; 43(24):9525-30. PubMed ID: 20000551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics.
    Carlotta-Jones DI; Purdy K; Kirwan K; Stratford J; Coles SR
    Bioresour Technol; 2020 May; 304():122983. PubMed ID: 32086038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell.
    Almatouq A; Babatunde AO
    Bioresour Technol; 2017 Aug; 237():193-203. PubMed ID: 28254344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H
    Rivera I; Bakonyi P; Buitrón G
    Chemosphere; 2017 Mar; 171():379-385. PubMed ID: 28033568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells.
    Luo S; Liu F; Fu B; He K; Yang H; Zhang X; Liang P; Huang X
    Water Res; 2021 Aug; 201():117326. PubMed ID: 34147740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.