These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34929739)

  • 21. Collaborative Completion of Transcription Factor Binding Profiles via Local Sensitive Unified Embedding.
    Zhu L; Guo WL; Lu C; Huang DS
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):946-958. PubMed ID: 27845669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of the transcription factor binding sites with meta-learning.
    Jing F; Zhang SW; Zhang S
    Methods; 2022 Jul; 203():207-213. PubMed ID: 35462009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting Transcription Factor Binding Sites with Deep Learning.
    Ghosh N; Santoni D; Saha I; Felici G
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PlantBind: an attention-based multi-label neural network for predicting plant transcription factor binding sites.
    Yan W; Li Z; Pian C; Wu Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36155619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MulTFBS: A Spatial-Temporal Network with Multichannels for Predicting Transcription Factor Binding Sites.
    Zhuang J; Huang X; Liu S; Gao W; Su R; Feng K
    J Chem Inf Model; 2024 May; 64(10):4322-4333. PubMed ID: 38733561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture.
    Wang S; Zhang Q; Shen Z; He Y; Chen ZH; Li J; Huang DS
    Mol Ther Nucleic Acids; 2021 Jun; 24():154-163. PubMed ID: 33767912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the prediction of DNA-protein binding by integrating multi-scale dense convolutional network with fault-tolerant coding.
    Yin YH; Shen LC; Jiang Y; Gao S; Song J; Yu DJ
    Anal Biochem; 2022 Nov; 656():114878. PubMed ID: 36049552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework.
    Yang J; Ma A; Hoppe AD; Wang C; Li Y; Zhang C; Wang Y; Liu B; Ma Q
    Nucleic Acids Res; 2019 Sep; 47(15):7809-7824. PubMed ID: 31372637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporating evolution of transcription factor binding sites into annotated alignments.
    Bais AS; Grossmann S; Vingron M
    J Biosci; 2007 Aug; 32(5):841-50. PubMed ID: 17914226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepGRN: prediction of transcription factor binding site across cell-types using attention-based deep neural networks.
    Chen C; Hou J; Shi X; Yang H; Birchler JA; Cheng J
    BMC Bioinformatics; 2021 Feb; 22(1):38. PubMed ID: 33522898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracting transcription factor binding sites from unaligned gene sequences with statistical models.
    Lu CC; Yuan WH; Chen TM
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S7. PubMed ID: 19091030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SAResNet: self-attention residual network for predicting DNA-protein binding.
    Shen LC; Liu Y; Song J; Yu DJ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DeepTFactor: A deep learning-based tool for the prediction of transcription factors.
    Kim GB; Gao Y; Palsson BO; Lee SY
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism.
    Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J
    Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TAMC: A deep-learning approach to predict motif-centric transcriptional factor binding activity based on ATAC-seq profile.
    Yang T; Henao R
    PLoS Comput Biol; 2022 Sep; 18(9):e1009921. PubMed ID: 36094959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Domain-adaptive neural networks improve cross-species prediction of transcription factor binding.
    Cochran K; Srivastava D; Shrikumar A; Balsubramani A; Hardison RC; Kundaje A; Mahony S
    Genome Res; 2022 Mar; 32(3):512-523. PubMed ID: 35042722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational prediction and characterization of cell-type-specific and shared binding sites.
    Zhang Q; Teng P; Wang S; He Y; Cui Z; Guo Z; Liu Y; Yuan C; Liu Q; Huang DS
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36484687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Building Transcription Factor Binding Site Models to Understand Gene Regulation in Plants.
    Lai X; Stigliani A; Vachon G; Carles C; Smaczniak C; Zubieta C; Kaufmann K; Parcy F
    Mol Plant; 2019 Jun; 12(6):743-763. PubMed ID: 30447332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Weakly-Supervised Convolutional Neural Network Architecture for Predicting Protein-DNA Binding.
    Zhang Q; Zhu L; Bao W; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):679-689. PubMed ID: 30106688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.