BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3493049)

  • 1. Suppression and potentiation of 5-hydroxytryptophan-induced hypoglycaemia by alpha-monofluoromethyldopa: correlation with the accumulation of 5-hydroxytryptamine in the liver.
    Endo Y
    Br J Pharmacol; 1987 Jan; 90(1):161-5. PubMed ID: 3493049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that the accumulation of 5-hydroxytryptamine in the liver but not in the brain may cause the hypoglycaemia induced by 5-hydroxytryptophan.
    Endo Y
    Br J Pharmacol; 1985 Jul; 85(3):591-8. PubMed ID: 3875380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central and peripheral mechanisms contribute to the antiemetic actions of delta-9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis.
    Darmani NA; Johnson JC
    Eur J Pharmacol; 2004 Mar; 488(1-3):201-12. PubMed ID: 15044052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms underlying the effects of 5-hydroxytryptamine and 5-hydroxytryptophan in pancreatic islets. A proposed role for L-aromatic amino acid decarboxylase.
    Lindström P; Sehlin J
    Endocrinology; 1983 Apr; 112(4):1524-9. PubMed ID: 6339207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of hypoglycaemia and accumulation of 5-hydroxytryptamine in the liver after the injection of mitogenic substances into mice.
    Endo Y
    Br J Pharmacol; 1984 Apr; 81(4):645-50. PubMed ID: 6722393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-5-hydroxytryptophan. Correlation between anticonvulsant effect and increases in levels of 5-hydroxyindoles in plasma and brain.
    Löscher W; Pagliusi SR; Müller F
    Neuropharmacology; 1984 Sep; 23(9):1041-8. PubMed ID: 6083501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of serum melatonin concentration and synthesis of brain indolealkylamines by monofluoromethyldopa in the rat.
    Bradbury AJ; Giddins RE; Smith JA
    J Pineal Res; 1985; 2(2):169-76. PubMed ID: 2420961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma accumulation of metabolism of orally administered single dose L-5-hydroxytryptophan in man.
    Magnussen I; Jensen TS; Rand JH; Van Woert MH
    Acta Pharmacol Toxicol (Copenh); 1981 Sep; 49(3):184-9. PubMed ID: 6175178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The serotonin precursor 5-hydroxytryptophan elevates serum leptin levels in mice.
    Yamada J; Sugimoto Y; Ujikawa M
    Eur J Pharmacol; 1999 Oct; 383(1):49-51. PubMed ID: 10556680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of inhibitors of 5-hydroxytryptamine uptake on plasma glucose and their interaction with 5-hydroxytryptophan in producing hypoglycaemia in mice.
    Wilson GA; Furman BL
    Eur J Pharmacol; 1982 Mar; 78(3):263-70. PubMed ID: 7040087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of administration of 5-hydroxytryptophan and an inhibitor of L-aromatic amino acid decarboxylase on glucose metabolism in rat brain.
    Wong KL; Tyce GM
    Neurochem Res; 1979 Apr; 4(2):277-87. PubMed ID: 313531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further studies on the inhibition of monoamine synthesis by monofluoromethyldopa.
    Bey P; Jung MJ; Koch-Weser J; Palfreyman MG; Sjoerdsma A; Wagner J; Zraïka M
    Br J Pharmacol; 1980 Dec; 70(4):571-6. PubMed ID: 7470730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [(11)C]5-HTP and microPET are not suitable for pharmacodynamic studies in the rodent brain.
    Visser AK; Ramakrishnan NK; Willemsen AT; Di Gialleonardo V; de Vries EF; Kema IP; Dierckx RA; van Waarde A
    J Cereb Blood Flow Metab; 2014 Jan; 34(1):118-25. PubMed ID: 24084697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backward walking induced by L-5-hydroxytryptophan in mice.
    Shimomura K; Mori J; Honda F
    Jpn J Pharmacol; 1981 Feb; 31(1):39-46. PubMed ID: 6973044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of lipopolysaccharide, interleukin-1 and tumour necrosis factor on the hepatic accumulation of 5-hydroxytryptamine and platelets in the mouse.
    Endo Y; Nakamura M
    Br J Pharmacol; 1992 Mar; 105(3):613-9. PubMed ID: 1628148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats.
    Lynn-Bullock CP; Welshhans K; Pallas SL; Katz PS
    J Chem Neuroanat; 2004 May; 27(2):129-38. PubMed ID: 15121217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tolerance to the increased locomotor activity produced by L-5-hydroxytryptophan following peripheral decarboxylase inhibition in mice.
    Magyar RL; Gillin JC; Wyatt RJ
    Psychopharmacology (Berl); 1978 Apr; 56(3):343-50. PubMed ID: 418444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central versus peripheral effects on temperature preference and body temperature following alteration of 5-HT in maturing mice.
    Goodrich C; Lechner R; Slone W
    Physiol Behav; 1989 Aug; 46(2):203-9. PubMed ID: 2602460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chlorimipramine and protriptyline on the hyperactivity induced by 5-hydroxytryptophan after peripheral decarboxylase inhibition in mice.
    Modigh K
    J Neural Transm; 1973; 34(2):101-9. PubMed ID: 4541821
    [No Abstract]   [Full Text] [Related]  

  • 20. Brain 5-hydroxytryptamine level, metabolism, and binding in E1 mice.
    Hiramatsu M
    Neurochem Res; 1983 Sep; 8(9):1163-75. PubMed ID: 6415506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.