These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34930556)

  • 1. The cAMP-dependent protein kinase A pathway perturbs autophagy and plays important roles in development and virulence of Sclerotinia sclerotiorum.
    Yu PL; Rollins JA
    Fungal Biol; 2022 Jan; 126(1):20-34. PubMed ID: 34930556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SsATG8 and SsNBR1 mediated-autophagy is required for fungal development, proteasomal stress response and virulence in Sclerotinia sclerotiorum.
    Zhang H; Li Y; Lai W; Huang K; Li Y; Wang Z; Chen X; Wang A
    Fungal Genet Biol; 2021 Dec; 157():103632. PubMed ID: 34710583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKA-independent manner in Sclerotinia sclerotiorum.
    Chen C; Dickman MB
    Mol Microbiol; 2005 Jan; 55(1):299-311. PubMed ID: 15612936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cAMP phosphodiesterase is essential for sclerotia formation and virulence in
    Xu Y; Qiu Y; Zhang Y; Li X
    Front Plant Sci; 2023; 14():1175552. PubMed ID: 37324679
    [No Abstract]   [Full Text] [Related]  

  • 5. Transcription factor SsFoxE3 activating SsAtg8 is critical for sclerotia, compound appressoria formation, and pathogenicity in Sclerotinia sclerotiorum.
    Jiao W; Yu H; Cong J; Xiao K; Zhang X; Liu J; Zhang Y; Pan H
    Mol Plant Pathol; 2022 Feb; 23(2):204-217. PubMed ID: 34699137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The
    Jiao W; Yu H; Chen X; Xiao K; Jia D; Wang F; Zhang Y; Pan H
    J Fungi (Basel); 2022 Dec; 8(12):. PubMed ID: 36547647
    [No Abstract]   [Full Text] [Related]  

  • 7. Increase in Endogenous and Exogenous Cyclic AMP Levels Inhibits Sclerotial Development in Sclerotinia sclerotiorum.
    Rollins JA; Dickman MB
    Appl Environ Microbiol; 1998 Jul; 64(7):2539-44. PubMed ID: 9647827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum.
    Jurick WM; Rollins JA
    Fungal Genet Biol; 2007 Jun; 44(6):521-30. PubMed ID: 17178247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing.
    Chen C; Harel A; Gorovoits R; Yarden O; Dickman MB
    Mol Plant Microbe Interact; 2004 Apr; 17(4):404-13. PubMed ID: 15077673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea.
    Schumacher J; Kokkelink L; Huesmann C; Jimenez-Teja D; Collado IG; Barakat R; Tudzynski P; Tudzynski B
    Mol Plant Microbe Interact; 2008 Nov; 21(11):1443-59. PubMed ID: 18842094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum.
    Yu Y; Xiao J; Zhu W; Yang Y; Mei J; Bi C; Qian W; Qing L; Tan W
    Mol Plant Pathol; 2017 Oct; 18(8):1052-1061. PubMed ID: 27392818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cAMP-PKA signalling pathway regulates hyphal growth, conidiation, trap morphogenesis, stress tolerance, and autophagy in Arthrobotrys oligospora.
    Zhu MC; Zhao N; Liu YK; Li XM; Zhen ZY; Zheng YQ; Zhang KQ; Yang JK
    Environ Microbiol; 2022 Dec; 24(12):6524-6538. PubMed ID: 36260054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants.
    Liang X; Liberti D; Li M; Kim YT; Hutchens A; Wilson R; Rollins JA
    Mol Plant Pathol; 2015 Aug; 16(6):559-71. PubMed ID: 25285668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal oxalate decarboxylase activity contributes to Sclerotinia sclerotiorum early infection by affecting both compound appressoria development and function.
    Liang X; Moomaw EW; Rollins JA
    Mol Plant Pathol; 2015 Oct; 16(8):825-36. PubMed ID: 25597873
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Hossain MM; Sultana F; Li W; Tran LP; Mostofa MG
    Cells; 2023 Mar; 12(7):. PubMed ID: 37048136
    [No Abstract]   [Full Text] [Related]  

  • 16. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum.
    Yang G; Tang L; Gong Y; Xie J; Fu Y; Jiang D; Li G; Collinge DB; Chen W; Cheng J
    New Phytol; 2018 Jan; 217(2):739-755. PubMed ID: 29076546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion.
    Bashi ZD; Gyawali S; Bekkaoui D; Coutu C; Lee L; Poon J; Rimmer SR; Khachatourians GG; Hegedus DD
    Can J Microbiol; 2016 Oct; 62(10):836-850. PubMed ID: 27503454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum.
    Hu S; Zhou X; Gu X; Cao S; Wang C; Xu JR
    Mol Plant Microbe Interact; 2014 Jun; 27(6):557-66. PubMed ID: 24450772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-Talk and Multiple Control of Target of Rapamycin (TOR) in Sclerotinia sclerotiorum.
    Jiao W; Ding W; Rollins JA; Liu J; Zhang Y; Zhang X; Pan H
    Microbiol Spectr; 2023 Mar; 11(2):e0001323. PubMed ID: 36943069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Putative MAPK Kinase Kinase Gene
    Li T; Xiu Q; Wang J; Duan Y; Zhou M
    Phytopathology; 2021 Mar; 111(3):521-530. PubMed ID: 33044134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.