BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34930707)

  • 1. Physically-based structural modeling of a typical regenerative tissue analog bridges material macroscale continuum and cellular microscale discreteness and elucidates the hierarchical characteristics of cell-matrix interaction.
    Feng Z; Fujita K; Yano M; Kosawada T; Sato D; Nakamura T; Umezu M
    J Mech Behav Biomed Mater; 2022 Feb; 126():104956. PubMed ID: 34930707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance.
    Barocas VH; Tranquillo RT
    J Biomech Eng; 1997 May; 119(2):137-45. PubMed ID: 9168388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a three-dimensional unit cell to model the micromechanical response of a collagen-based extracellular matrix.
    Susilo ME; Roeder BA; Voytik-Harbin SL; Kokini K; Nauman EA
    Acta Biomater; 2010 Apr; 6(4):1471-86. PubMed ID: 19913642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.
    Reinhardt JW; Gooch KJ
    J Biomech Eng; 2014 Feb; 136(2):021024. PubMed ID: 24317298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Measurements of the Mechanical Properties of Collagen Matrix.
    Li H; Xu B; Zhou EH; Sunyer R; Zhang Y
    ACS Biomater Sci Eng; 2017 Nov; 3(11):2815-2824. PubMed ID: 33418705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Agent-Based Discrete Collagen Fiber Network Model of Dynamic Traction Force-Induced Remodeling.
    Reinhardt JW; Gooch KJ
    J Biomech Eng; 2018 May; 140(5):. PubMed ID: 28975252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics of collagen fibrils: A two-scale discrete damage model.
    Linka K; Itskov M
    J Mech Behav Biomed Mater; 2016 May; 58():163-172. PubMed ID: 26472217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures.
    Srbova L; Arasalo O; Lehtonen AJ; Pokki J
    Soft Matter; 2024 Apr; 20(16):3483-3498. PubMed ID: 38587658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microrheological characterization of collagen systems: from molecular solutions to fibrillar gels.
    Shayegan M; Forde NR
    PLoS One; 2013; 8(8):e70590. PubMed ID: 23936454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biphasic visco-hyperelastic damage model for articular cartilage: application to micromechanical modelling of the osteoarthritis-induced degradation behaviour.
    Liu D; Ma S; Stoffel M; Markert B
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1055-1077. PubMed ID: 31802293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.
    Quinn TM; Morel V
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):73-82. PubMed ID: 16715320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of fibril taper on the function of collagen to reinforce extracellular matrix.
    Goh KL; Meakin JR; Aspden RM; Hukins DW
    Proc Biol Sci; 2005 Sep; 272(1575):1979-83. PubMed ID: 16191606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach.
    Marino M; Vairo G
    Comput Methods Biomech Biomed Engin; 2014; 17(1):11-30. PubMed ID: 22525051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage.
    Huang CY; Mow VC; Ateshian GA
    J Biomech Eng; 2001 Oct; 123(5):410-7. PubMed ID: 11601725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropocollagen springs allow collagen fibrils to stretch elastically.
    Bell JS; Hayes S; Whitford C; Sanchez-Weatherby J; Shebanova O; Terrill NJ; Sørensen TLM; Elsheikh A; Meek KM
    Acta Biomater; 2022 Apr; 142():185-193. PubMed ID: 35081430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts.
    Feng Z; Wagatsuma Y; Kikuchi M; Kosawada T; Nakamura T; Sato D; Shirasawa N; Kitajima T; Umezu M
    Biomaterials; 2014 Sep; 35(28):8078-91. PubMed ID: 24976242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Recruitment Model of Tendon Viscoelasticity That Incorporates Fibril Creep and Explains Strain-Dependent Relaxation.
    Shearer T; Parnell WJ; Lynch B; Screen HRC; David Abrahams I
    J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 34043761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical mechanics of connective tissues: integrating insights from nano to macroscopic studies.
    Gohl KL; Listrat A; Béchet D
    J Biomed Nanotechnol; 2014 Oct; 10(10):2464-507. PubMed ID: 25992406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain.
    Jorba I; Beltrán G; Falcones B; Suki B; Farré R; García-Aznar JM; Navajas D
    Acta Biomater; 2019 Jul; 92():265-276. PubMed ID: 31085362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.