These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34930842)

  • 1. Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies.
    Bains W; Petkowski JJ; Rimmer PB; Seager S
    Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34930842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H2O-H2SO4 system in Venus' clouds and OCS, CO, and H2SO4 profiles in Venus' troposphere.
    Krasnopolsky VA; Pollack JB
    Icarus; 1994 May; 109(1):58-78. PubMed ID: 11539137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biologically Available Chemical Energy in the Temperate but Uninhabitable Venusian Cloud Layer: What Do We Want to Know?
    Cockell CS; Higgins PM; Johnstone AA
    Astrobiology; 2021 Oct; 21(10):1224-1236. PubMed ID: 33470900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus in the Clouds of Venus: Potential for Bioavailability.
    Milojevic T; Treiman AH; Limaye SS
    Astrobiology; 2021 Oct; 21(10):1250-1263. PubMed ID: 34342520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere.
    Seager S; Petkowski JJ; Gao P; Bains W; Bryan NC; Ranjan S; Greaves J
    Astrobiology; 2021 Oct; 21(10):1206-1223. PubMed ID: 32787733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection.
    Kotsyurbenko OR; Cordova JA; Belov AA; Cheptsov VS; Kölbl D; Khrunyk YY; Kryuchkova MO; Milojevic T; Mogul R; Sasaki S; Słowik GP; Snytnikov V; Vorobyova EA
    Astrobiology; 2021 Oct; 21(10):1186-1205. PubMed ID: 34255549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Venus' Spectral Signatures and the Potential for Life in the Clouds.
    Limaye SS; Mogul R; Smith DJ; Ansari AH; Słowik GP; Vaishampayan P
    Astrobiology; 2018 Sep; 18(9):1181-1198. PubMed ID: 29600875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposed energy-metabolisms cannot explain the atmospheric chemistry of Venus.
    Jordan S; Shorttle O; Rimmer PB
    Nat Commun; 2022 Jun; 13(1):3274. PubMed ID: 35701394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of variation in coagulation and photochemistry parameters on the particle size distributions in the Venus clouds.
    McGouldrick K
    Earth Planets Space; 2017; 69(1):161. PubMed ID: 31997914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Case (or Not) for Life in the Venusian Clouds.
    Schulze-Makuch D
    Life (Basel); 2021 Mar; 11(3):. PubMed ID: 33804625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ biochemical characterization of Venus cloud particles using a life-signature detection microscope.
    Sasaki S; Yamagishi A; Yoshimura Y; Enya K; Miyakawa A; Ohno S; Fujita K; Usui T; Limaye SS
    Can J Microbiol; 2022 Jun; 68(6):413-425. PubMed ID: 35235433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphine Generation Pathways on Rocky Planets.
    Omran A; Oze C; Jackson B; Mehta C; Barge LM; Bada J; Pasek MA
    Astrobiology; 2021 Oct; 21(10):1264-1276. PubMed ID: 34551269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential for Phototrophy in Venus' Clouds.
    Mogul R; Limaye SS; Lee YJ; Pasillas M
    Astrobiology; 2021 Oct; 21(10):1237-1249. PubMed ID: 34569810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular perspective for global modeling of upper atmospheric NH
    Ge C; Zhu C; Francisco JS; Zeng XC; Wang J
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6147-6152. PubMed ID: 29848636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorption of sunlight in the atmosphere of venus.
    Tomasko MG; Doose LR; Smith PH
    Science; 1979 Jul; 205(4401):80-2. PubMed ID: 17778909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Venus lower atmospheric composition: preliminary results from pioneer venus.
    Hoffman JH; Hodges RR; McElroy MB; Donahue TM; Kolpin M
    Science; 1979 Feb; 203(4382):800-2. PubMed ID: 17833003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphine on Venus Cannot Be Explained by Conventional Processes.
    Bains W; Petkowski JJ; Seager S; Ranjan S; Sousa-Silva C; Rimmer PB; Zhan Z; Greaves JS; Richards AMS
    Astrobiology; 2021 Oct; 21(10):1277-1304. PubMed ID: 34283644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Venus Life Equation.
    Izenberg NR; Gentry DM; Smith DJ; Gilmore MS; Grinspoon DH; Bullock MA; Boston PJ; Słowik GP
    Astrobiology; 2021 Oct; 21(10):1305-1315. PubMed ID: 33512272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere.
    Schulze-Makuch D; Grinspoon DH; Abbas O; Irwin LN; Bullock MA
    Astrobiology; 2004; 4(1):11-8. PubMed ID: 15104900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.