These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34930970)

  • 1. A mild aqueous synthesis of ligand-free copper nanoparticles for low temperature sintering nanopastes with nickel salt assistance.
    Imamura H; Kamikoriyama Y; Muramatsu A; Kanie K
    Sci Rep; 2021 Dec; 11(1):24268. PubMed ID: 34930970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambient Aqueous-Phase Synthesis of Copper Nanoparticles and Nanopastes with Low-Temperature Sintering and Ultra-High Bonding Abilities.
    Kamikoriyama Y; Imamura H; Muramatsu A; Kanie K
    Sci Rep; 2019 Jan; 9(1):899. PubMed ID: 30692589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Concentration Synthesis of Sub-10-nm Copper Nanoparticles for Application to Conductive Nanoinks.
    Hokita Y; Kanzaki M; Sugiyama T; Arakawa R; Kawasaki H
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19382-9. PubMed ID: 26287811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sintering Mechanism of a Supersaturated Ag-Cu Nanoalloy Film for Power Electronic Packaging.
    Jia Q; Zou G; Wang W; Ren H; Zhang H; Deng Z; Feng B; Liu L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16743-16752. PubMed ID: 32174102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.
    Ji H; Zhou J; Liang M; Lu H; Li M
    Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature and Low-Pressure Cu-Cu Bonding by Highly Sinterable Cu Nanoparticle Paste.
    Li J; Yu X; Shi T; Cheng C; Fan J; Cheng S; Liao G; Tang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):255. PubMed ID: 28384997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications.
    Yoon JW; Back JH
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Shear Strength and Microstructure Formation of Joined Ni Superalloys Using Ni Nanopastes.
    Sattler B; Hausner S; Wagner G
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.
    Kim TG; Park HJ; Woo K; Jeong S; Choi Y; Lee SY
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1059-1066. PubMed ID: 29226669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu-Ag Nanocomposite Pastes for Low Temperature Bonding and Flexible Interlayer-Interconnections.
    Lu YC; Liao WH; Wu TJ; Yasuda K; Song JM
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning Ag nanoparticles by selective wetting for fine size Cu-Ag-Cu bonding.
    Liang Q; Li J; Li T; Liao G; Tang Z; Shi T
    Nanotechnology; 2020 Aug; 31(35):355302. PubMed ID: 32422626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper-based conductive composites with tailored thermal expansion.
    Della Gaspera E; Tucker R; Star K; Lan EH; Ju YS; Dunn B
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10966-74. PubMed ID: 24175870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size control of Cu nanorods through oxygen-mediated growth and low temperature sintering.
    Wang PI; Parker TC; Karabacak T; Wang GC; Lu TM
    Nanotechnology; 2009 Feb; 20(8):085605. PubMed ID: 19417453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique.
    Joo SJ; Park SH; Moon CJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress in Rapid Sintering of Nanosilver for Electronics Applications.
    Liu W; An R; Wang C; Zheng Z; Tian Y; Xu R; Wang Z
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filtration-induced production of conductive/robust Cu films on cellulose paper by low-temperature sintering in air.
    Sakurai S; Akiyama Y; Kawasaki H
    R Soc Open Sci; 2018 Jul; 5(7):172417. PubMed ID: 30109061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Sintering-Bonding Technology Using Ag Nanoparticles for Electronic Packaging.
    Yan J
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33917295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.