These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
608 related articles for article (PubMed ID: 34931393)
1. Current synthetic chemistry towards cyclic antimicrobial peptides. He T; Qu R; Zhang J J Pept Sci; 2022 Jun; 28(6):e3387. PubMed ID: 34931393 [TBL] [Abstract][Full Text] [Related]
2. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine. He S; Yang Z; Li X; Wu H; Zhang L; Shan A; Wang J Acta Biomater; 2023 Jul; 164():175-194. PubMed ID: 37100185 [TBL] [Abstract][Full Text] [Related]
3. [Progress on the design and optimization of antimicrobial peptides]. Zhang R; Wu D; Gao Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1247-1253. PubMed ID: 36575095 [TBL] [Abstract][Full Text] [Related]
4. Designing the antimicrobial peptide with centrosymmetric and amphipathic characterizations for improving antimicrobial activity. Lee PC; Yen CF; Lin CC; Lung FT J Pept Sci; 2023 Nov; 29(11):e3510. PubMed ID: 37151189 [TBL] [Abstract][Full Text] [Related]
5. Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. Abdel Monaim SAH; Somboro AM; El-Faham A; de la Torre BG; Albericio F ChemMedChem; 2019 Jan; 14(1):24-51. PubMed ID: 30394699 [TBL] [Abstract][Full Text] [Related]
6. Design, Synthesis, and Evaluation of Amphiphilic Cyclic and Linear Peptides Composed of Hydrophobic and Positively-Charged Amino Acids as Antibacterial Agents. Riahifard N; Mozaffari S; Aldakhil T; Nunez F; Alshammari Q; Alshammari S; Yamaki J; Parang K; Tiwari RK Molecules; 2018 Oct; 23(10):. PubMed ID: 30360400 [TBL] [Abstract][Full Text] [Related]
7. BamA-targeted antimicrobial peptide design for enhanced efficacy and reduced toxicity. Yang L; Luo M; Liu Z; Li Y; Lin Z; Geng S; Wang Y Amino Acids; 2023 Oct; 55(10):1317-1331. PubMed ID: 37670010 [TBL] [Abstract][Full Text] [Related]
8. Optimized proteolytic resistance motif (DabW)-based U1-2WD: A membrane-induced self-aggregating peptide to trigger bacterial agglutination and death. He S; Yang Z; Li X; Wu H; Zhang L; Wang J; Shan A Acta Biomater; 2022 Nov; 153():540-556. PubMed ID: 36162762 [TBL] [Abstract][Full Text] [Related]
9. Functional and Toxicological Evaluation of MAA-41: A Novel Rationally Designed Antimicrobial Peptide Using Hybridization and Modification Methods from LL-37 and BMAP-28. Masadeh M; Ayyad A; Haddad R; Alsaggar M; Alzoubi K; Alrabadi N Curr Pharm Des; 2022; 28(26):2177-2188. PubMed ID: 35792128 [TBL] [Abstract][Full Text] [Related]
10. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Monroc S; Badosa E; Feliu L; Planas M; Montesinos E; Bardají E Peptides; 2006 Nov; 27(11):2567-74. PubMed ID: 16730857 [TBL] [Abstract][Full Text] [Related]
11. Control of cell selectivity of antimicrobial peptides. Matsuzaki K Biochim Biophys Acta; 2009 Aug; 1788(8):1687-92. PubMed ID: 18952049 [TBL] [Abstract][Full Text] [Related]
12. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Parchebafi A; Tamanaee F; Ehteram H; Ahmad E; Nikzad H; Haddad Kashani H Microb Cell Fact; 2022 Jun; 21(1):118. PubMed ID: 35717207 [TBL] [Abstract][Full Text] [Related]
13. Unnatural amino acids: promising implications for the development of new antimicrobial peptides. Wang X; Yang X; Wang Q; Meng D Crit Rev Microbiol; 2023 Mar; 49(2):231-255. PubMed ID: 35254957 [TBL] [Abstract][Full Text] [Related]
14. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Kopeikin PM; Zharkova MS; Kolobov AA; Smirnova MP; Sukhareva MS; Umnyakova ES; Kokryakov VN; Orlov DS; Milman BL; Balandin SV; Panteleev PV; Ovchinnikova TV; Komlev AS; Tossi A; Shamova OV Front Cell Infect Microbiol; 2020; 10():552905. PubMed ID: 33194795 [TBL] [Abstract][Full Text] [Related]
15. Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. Liu B; Zhang W; Gou S; Huang H; Yao J; Yang Z; Liu H; Zhong C; Liu B; Ni J; Wang R J Pept Sci; 2017 Nov; 23(11):824-832. PubMed ID: 28833783 [TBL] [Abstract][Full Text] [Related]
16. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs. Yang X; Lee WH; Zhang Y J Proteome Res; 2012 Jan; 11(1):306-19. PubMed ID: 22029824 [TBL] [Abstract][Full Text] [Related]
17. Site-Specific Isopeptide Bond Formation: A Powerful Tool for the Generation of Potent and Nontoxic Antimicrobial Peptides. Wani NA; Stolovicki E; Hur DB; Shai Y J Med Chem; 2022 Mar; 65(6):5085-5094. PubMed ID: 35290038 [TBL] [Abstract][Full Text] [Related]
18. The Antimicrobial Effect Against Multi-drug Resistant Bacteria of the SK4 Peptide: A Novel Hybrid Peptide of Cecropin-A and BMAP-27. Masadeh MM; Laila SA; Haddad R; Alzoubi K; Alhaijaa AA; Alrabadi N Curr Pharm Biotechnol; 2023; 24(8):1070-1078. PubMed ID: 36321228 [TBL] [Abstract][Full Text] [Related]
19. Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Moghadam MT; Mojtahedi A; Moghaddam MM; Fasihi-Ramandi M; Mirnejad R Appl Microbiol Biotechnol; 2022 Jun; 106(11):3879-3893. PubMed ID: 35604438 [TBL] [Abstract][Full Text] [Related]
20. Recent advances in the design of antimicrobial peptide conjugates. Silva ARP; Guimarães MS; Rabelo J; Belén LH; Perecin CJ; Farías JG; Santos JHPM; Rangel-Yagui CO J Mater Chem B; 2022 May; 10(19):3587-3600. PubMed ID: 35262120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]