These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34931420)

  • 1. Spatiotemporal Control of Molecular Cascade Reactions by a Reconfigurable DNA Origami Domino Array.
    Fan S; Ji B; Liu Y; Zou K; Tian Z; Dai B; Cui D; Zhang P; Ke Y; Song J
    Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202116324. PubMed ID: 34931420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Catalysis Guided by Nucleic Acid Networks and DNA Nanostructures.
    Ouyang Y; Zhang P; Willner I
    Bioconjug Chem; 2023 Jan; 34(1):51-69. PubMed ID: 35973134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information Coding in a Reconfigurable DNA Origami Domino Array.
    Fan S; Wang D; Cheng J; Liu Y; Luo T; Cui D; Ke Y; Song J
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12991-12997. PubMed ID: 32304157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity-Induced Pattern Operations in Reconfigurable DNA Origami Domino Array.
    Fan S; Cheng J; Liu Y; Wang D; Luo T; Dai B; Zhang C; Cui D; Ke Y; Song J
    J Am Chem Soc; 2020 Aug; 142(34):14566-14573. PubMed ID: 32787238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programming the Curvatures in Reconfigurable DNA Domino Origami by Using Asymmetric Units.
    Wang D; Yu L; Ji B; Chang S; Song J; Ke Y
    Nano Lett; 2020 Nov; 20(11):8236-8241. PubMed ID: 33095024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switchable Triggered Interconversion and Reconfiguration of DNA Origami Dimers and Their Use for Programmed Catalysis.
    Wang J; Zhou Z; Yue L; Wang S; Willner I
    Nano Lett; 2018 Apr; 18(4):2718-2724. PubMed ID: 29537286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Regulation of Biomolecular Interactions with a Switchable Trident-Shaped DNA Nanoactuator.
    Xing C; Huang Y; Dai J; Zhong L; Wang H; Lin Y; Li J; Lu CH; Yang HH
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32579-32587. PubMed ID: 30156821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible reconfiguration of DNA origami nanochambers monitored by single-molecule FRET.
    Saccà B; Ishitsuka Y; Meyer R; Sprengel A; Schöneweiß EC; Nienhaus GU; Niemeyer CM
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3592-7. PubMed ID: 25630797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The collective behavior of spring-like motifs tethered to a DNA origami nanostructure.
    Schöneweiß EC; Saccà B
    Nanoscale; 2017 Mar; 9(13):4486-4496. PubMed ID: 28317958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable enzyme/DNAzyme cascades by the reconfiguration of DNA nanostructures.
    Hu Y; Wang F; Lu CH; Girsh J; Golub E; Willner I
    Chemistry; 2014 Dec; 20(49):16203-9. PubMed ID: 25308317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.
    Zhan P; Dutta PK; Wang P; Song G; Dai M; Zhao SX; Wang ZG; Yin P; Zhang W; Ding B; Ke Y
    ACS Nano; 2017 Feb; 11(2):1172-1179. PubMed ID: 28056172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prescribing DNA Origami Patterns via Scaffold Decoration.
    Zhang Y; Li Q; Liu X; Fan C; Liu H; Wang L
    Small; 2020 Apr; 16(16):e2000793. PubMed ID: 32227454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures.
    Fu J; Liu M; Liu Y; Yan H
    Acc Chem Res; 2012 Aug; 45(8):1215-26. PubMed ID: 22642503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triggered Reversible Reconfiguration of G-Quadruplex-Bridged "Domino"-Type Origami Dimers: Application of the Systems for Programmed Catalysis.
    Wang J; Yue L; Wang S; Willner I
    ACS Nano; 2018 Dec; 12(12):12324-12336. PubMed ID: 30427652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable DNA origami to generate quasifractal patterns.
    Zhang F; Nangreave J; Liu Y; Yan H
    Nano Lett; 2012 Jun; 12(6):3290-5. PubMed ID: 22559073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switchable DNA-origami nanostructures that respond to their environment and their applications.
    Daljit Singh JK; Luu MT; Abbas A; Wickham SFJ
    Biophys Rev; 2018 Oct; 10(5):1283-1293. PubMed ID: 30280371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.
    Chen H; Zhang H; Pan J; Cha TG; Li S; Andréasson J; Choi JH
    ACS Nano; 2016 May; 10(5):4989-96. PubMed ID: 27057775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.