These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34931452)

  • 1. Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuous-Flow System.
    Brandi F; Al-Naji M
    ChemSusChem; 2022 Mar; 15(5):e202102525. PubMed ID: 34931452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.
    Sun P; Long X; He H; Xia C; Li F
    ChemSusChem; 2013 Nov; 6(11):2190-7. PubMed ID: 24115374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Markedly Improved Catalytic Dehydration of Sorbitol to Isosorbide by Sol-Gel Sulfated Zirconia: A Quantitative Structure-Reactivity Study.
    Hopper JT; Ma R; Rawlings JB; Ford PC; Abu-Omar MM
    ACS Catal; 2023 Aug; 13(15):10137-10152. PubMed ID: 37564128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot synthesis of isosorbide from cellulose or lignocellulosic biomass: a challenge?
    Bonnin I; Mereau R; Tassaing T; De Oliveira Vigier K
    Beilstein J Org Chem; 2020; 16():1713-1721. PubMed ID: 32733615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isosorbide and dimethyl carbonate: a green match.
    Aricò F; Tundo P
    Beilstein J Org Chem; 2016; 12():2256-2266. PubMed ID: 28144292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-Free Production of Isosorbide from Sorbitol Catalyzed by a Polymeric Solid Acid.
    Yuan D; Li L; Li F; Wang Y; Wang F; Zhao N; Xiao F
    ChemSusChem; 2019 Nov; 12(22):4986-4995. PubMed ID: 31475463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heteropoly Acid-Based Catalysts for Hydrolytic Depolymerization of Cellulosic Biomass.
    Luo X; Wu H; Li C; Li Z; Li H; Zhang H; Li Y; Su Y; Yang S
    Front Chem; 2020; 8():580146. PubMed ID: 33102446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Pot Preparation of Dimethyl Isosorbide from d-Sorbitol via Dimethyl Carbonate Chemistry.
    Aricò F; Aldoshin AS; Tundo P
    ChemSusChem; 2017 Jan; 10(1):53-57. PubMed ID: 27922205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation.
    Kamimura A; Murata K; Tanaka Y; Okagawa T; Matsumoto H; Kaiso K; Yoshimoto M
    ChemSusChem; 2014 Dec; 7(12):3257-9. PubMed ID: 25223397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)tetrahydrofuran.
    Chien Truong C; Kumar Mishra D; Hyeok Ko S; Jin Kim Y; Suh YW
    ChemSusChem; 2022 Jul; 15(13):e202200178. PubMed ID: 35286783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water.
    Yamaguchi A; Muramatsu N; Mimura N; Shirai M; Sato O
    Phys Chem Chem Phys; 2017 Jan; 19(4):2714-2722. PubMed ID: 27896339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose Depolymerization over Heterogeneous Catalysts.
    Shrotri A; Kobayashi H; Fukuoka A
    Acc Chem Res; 2018 Mar; 51(3):761-768. PubMed ID: 29443505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal liquefaction of biomass: developments from batch to continuous process.
    Elliott DC; Biller P; Ross AB; Schmidt AJ; Jones SB
    Bioresour Technol; 2015 Feb; 178():147-156. PubMed ID: 25451780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon.
    Op de Beeck B; Geboers J; Van de Vyver S; Van Lishout J; Snelders J; Huijgen WJ; Courtin CM; Jacobs PA; Sels BF
    ChemSusChem; 2013 Jan; 6(1):199-208. PubMed ID: 23307750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of high-octane gasoline via hydrodeoxygenation of sorbitol over palladium-based bimetallic catalysts.
    Kwon EE; Kim YT; Kim HJ; Andrew Lin KY; Kim KH; Lee J; Huber GW
    J Environ Manage; 2018 Dec; 227():329-334. PubMed ID: 30199729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania Heterogeneous Catalysts.
    Moreno-Marrodan C; Barbaro P; Caporali S; Bossola F
    ChemSusChem; 2018 Oct; 11(20):3649-3660. PubMed ID: 30106509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Synthetic Characteristics of Biomass-Derived Isosorbide-Based Poly(arylene ether ketone)s for Sustainable Super Engineering Plastic.
    Park SA; Im C; Oh DX; Hwang SY; Jegal J; Kim JH; Chang YW; Jeon H; Park J
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31288408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot hydrothermal conversion of different residues to value-added chemicals usıng new acidic carbonaceous catalyst.
    Ozsel BK; Ozturk D; Nis B
    Bioresour Technol; 2019 Oct; 289():121627. PubMed ID: 31212175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review.
    Wang Y; Akbarzadeh A; Chong L; Du J; Tahir N; Awasthi MK
    Chemosphere; 2022 Jun; 297():134181. PubMed ID: 35248592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.