These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 34931593)
1. Development of cyclosporine A nanosuspension: cytotoxicity and permeability on Caco-2 cell lines. Gülbağ Pınar S; Pezik E; Mutlu Ağardan B; Çelebi N Pharm Dev Technol; 2022 Jan; 27(1):52-62. PubMed ID: 34931593 [TBL] [Abstract][Full Text] [Related]
2. A new nanosuspension prepared with wet milling method for oral delivery of highly variable drug Cyclosporine A: development, optimization and in vivo evaluation. Pınar SG; Canpınar H; Tan Ç; Çelebi N Eur J Pharm Sci; 2022 Apr; 171():106123. PubMed ID: 35017012 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of an aprepitant nanosuspension using hydroxypropyl chitosan to increase the bioavailability. Liu J; Li S; Ao W; Li Y; Xiao Y; Bai M Biochem Biophys Res Commun; 2022 Nov; 631():72-77. PubMed ID: 36179498 [TBL] [Abstract][Full Text] [Related]
4. Preparation and Characterization of Celecoxib Nanosuspension Using Bead Milling. Kim HI; Jee JP; Kim ST; Kang D; Kim YC; Kim HC; Park SY; Lee HM; Cho KH; Kim DY; Choi SU; Jang DJ J Nanosci Nanotechnol; 2019 Feb; 19(2):1184-1187. PubMed ID: 30360230 [TBL] [Abstract][Full Text] [Related]
5. Isoliquiritigenin Nanosuspension Enhances Cytostatic Effects in A549 Lung Cancer Cells. Qiao F; Zhao Y; Mai Y; Guo J; Dong L; Zhang W; Yang J Planta Med; 2020 May; 86(8):538-547. PubMed ID: 32294789 [TBL] [Abstract][Full Text] [Related]
6. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Patel PJ; Gajera BY; Dave RH Drug Dev Ind Pharm; 2018 Dec; 44(12):1942-1952. PubMed ID: 30027778 [TBL] [Abstract][Full Text] [Related]
7. Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A Design of Experiment approach. Karakucuk A; Celebi N; Teksin ZS Eur J Pharm Sci; 2016 Dec; 95():111-121. PubMed ID: 27181836 [TBL] [Abstract][Full Text] [Related]
8. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension. Ahuja BK; Jena SK; Paidi SK; Bagri S; Suresh S Int J Pharm; 2015 Jan; 478(2):540-52. PubMed ID: 25490182 [TBL] [Abstract][Full Text] [Related]
9. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability. Jain S; Reddy VA; Arora S; Patel K Drug Deliv Transl Res; 2016 Oct; 6(5):498-510. PubMed ID: 27129488 [TBL] [Abstract][Full Text] [Related]
10. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations. Sawant KK; Patel MH; Patel K Drug Dev Ind Pharm; 2016; 42(5):758-68. PubMed ID: 26548349 [TBL] [Abstract][Full Text] [Related]
11. Diclofenac acid nanocrystals as an effective strategy to reduce in vivo skin inflammation by improving dermal drug bioavailability. Pireddu R; Caddeo C; Valenti D; Marongiu F; Scano A; Ennas G; Lai F; Fadda AM; Sinico C Colloids Surf B Biointerfaces; 2016 Jul; 143():64-70. PubMed ID: 26998867 [TBL] [Abstract][Full Text] [Related]
12. Formulation and Evaluation of Isradipine Nanosuspension and Exploring its Role as a Potential Anticancer Drug by Computational Approach. Mohapatra PK; Srivastava R; Varshney KK; Babu SH Anticancer Agents Med Chem; 2022; 22(10):1984-2001. PubMed ID: 34353274 [TBL] [Abstract][Full Text] [Related]
13. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods. Kim JH; Jang SW; Han SD; Hwang HD; Choi HG Pharmazie; 2011 Jul; 66(7):491-5. PubMed ID: 21812323 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate. Qiao H; Chen L; Rui T; Wang J; Chen T; Fu T; Li J; Di L Int J Nanomedicine; 2017; 12():1033-1046. PubMed ID: 28223797 [TBL] [Abstract][Full Text] [Related]
15. Development and in vivo/in vitro evaluation of novel herpetrione nanosuspension. Guo JJ; Yue PF; Lv JL; Han J; Fu SS; Jin SX; Jin SY; Yuan HL Int J Pharm; 2013 Jan; 441(1-2):227-33. PubMed ID: 23220096 [TBL] [Abstract][Full Text] [Related]
16. Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Oktay AN; Karakucuk A; Ilbasmis-Tamer S; Celebi N Eur J Pharm Sci; 2018 Sep; 122():254-263. PubMed ID: 29981401 [TBL] [Abstract][Full Text] [Related]
17. Ginkgolides-loaded soybean phospholipid-stabilized nanosuspension with improved storage stability and in vivo bioavailability. Wang P; Cao X; Chu Y; Wang P Colloids Surf B Biointerfaces; 2019 Sep; 181():910-917. PubMed ID: 31382340 [TBL] [Abstract][Full Text] [Related]
18. Rutin nanosuspension for potential management of osteoporosis: effect of particle size reduction on oral bioavailability, Gera S; Pooladanda V; Godugu C; Swamy Challa V; Wankar J; Dodoala S; Sampathi S Pharm Dev Technol; 2020 Oct; 25(8):971-988. PubMed ID: 32403972 [TBL] [Abstract][Full Text] [Related]
19. Optimization of a combined wet milling process in order to produce poly(vinyl alcohol) stabilized nanosuspension. Bartos C; Jójárt-Laczkovich O; Katona G; Budai-Szűcs M; Ambrus R; Bocsik A; Gróf I; Deli MA; Szabó-Révész P Drug Des Devel Ther; 2018; 12():1567-1580. PubMed ID: 29910603 [TBL] [Abstract][Full Text] [Related]
20. Development of daidzein nanosuspensions: Preparation, characterization, in vitro evaluation, and pharmacokinetic analysis. Wang H; Xiao Y; Wang H; Sang Z; Han X; Ren S; Du R; Shi X; Xie Y Int J Pharm; 2019 Jul; 566():67-76. PubMed ID: 31125715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]