These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 34931806)
1. 4-Deoxy-4-fluoro-GalNAz (4FGalNAz) Is a Metabolic Chemical Reporter of O-GlcNAc Modifications, Highlighting the Notable Substrate Flexibility of O-GlcNAc Transferase. Jackson EG; Cutolo G; Yang B; Yarravarapu N; Burns MWN; Bineva-Todd G; Roustan C; Thoden JB; Lin-Jones HM; van Kuppevelt TH; Holden HM; Schumann B; Kohler JJ; Woo CM; Pratt MR ACS Chem Biol; 2022 Jan; 17(1):159-170. PubMed ID: 34931806 [TBL] [Abstract][Full Text] [Related]
2. [Comparison of the performance of secretome analysis based on metabolic labeling by three unnatural sugars]. Mao Y; Zheng J; Feng S; Tian R Se Pu; 2021 Oct; 39(10):1086-1093. PubMed ID: 34505430 [TBL] [Abstract][Full Text] [Related]
3. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification. Chuh KN; Zaro BW; Piller F; Piller V; Pratt MR J Am Chem Soc; 2014 Sep; 136(35):12283-95. PubMed ID: 25153642 [TBL] [Abstract][Full Text] [Related]
4. The Small Molecule 2-Azido-2-deoxy-glucose Is a Metabolic Chemical Reporter of O-GlcNAc Modifications in Mammalian Cells, Revealing an Unexpected Promiscuity of O-GlcNAc Transferase. Zaro BW; Batt AR; Chuh KN; Navarro MX; Pratt MR ACS Chem Biol; 2017 Mar; 12(3):787-794. PubMed ID: 28135057 [TBL] [Abstract][Full Text] [Related]
5. The Metabolic Chemical Reporter 6-Azido-6-deoxy-glucose Further Reveals the Substrate Promiscuity of O-GlcNAc Transferase and Catalyzes the Discovery of Intracellular Protein Modification by O-Glucose. Darabedian N; Gao J; Chuh KN; Woo CM; Pratt MR J Am Chem Soc; 2018 Jun; 140(23):7092-7100. PubMed ID: 29771506 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Promiscuity of O-GlcNAc Transferase Enables Unexpected Metabolic Engineering of Cytoplasmic Proteins with 2-Azido-2-deoxy-glucose. Shen DL; Liu TW; Zandberg W; Clark T; Eskandari R; Alteen MG; Tan HY; Zhu Y; Cecioni S; Vocadlo D ACS Chem Biol; 2017 Jan; 12(1):206-213. PubMed ID: 27935279 [TBL] [Abstract][Full Text] [Related]
7. Enhanced transfer of a photocross-linking N-acetylglucosamine (GlcNAc) analog by an O-GlcNAc transferase mutant with converted substrate specificity. Rodriguez AC; Yu SH; Li B; Zegzouti H; Kohler JJ J Biol Chem; 2015 Sep; 290(37):22638-48. PubMed ID: 26240142 [TBL] [Abstract][Full Text] [Related]
8. Detecting and Imaging O-GlcNAc Sites Using Glycosyltransferases: A Systematic Approach to Study O-GlcNAc. Wu ZL; Tatge TJ; Grill AE; Zou Y Cell Chem Biol; 2018 Nov; 25(11):1428-1435.e3. PubMed ID: 30100348 [TBL] [Abstract][Full Text] [Related]
9. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. Shen DL; Gloster TM; Yuzwa SA; Vocadlo DJ J Biol Chem; 2012 May; 287(19):15395-408. PubMed ID: 22311971 [TBL] [Abstract][Full Text] [Related]
10. O-GlcNAc-specific antibody CTD110.6 cross-reacts with N-GlcNAc2-modified proteins induced under glucose deprivation. Isono T PLoS One; 2011 Apr; 6(4):e18959. PubMed ID: 21526146 [TBL] [Abstract][Full Text] [Related]
11. Antibodies that detect O-linked β-D-N-acetylglucosamine on the extracellular domain of cell surface glycoproteins. Tashima Y; Stanley P J Biol Chem; 2014 Apr; 289(16):11132-11142. PubMed ID: 24573683 [TBL] [Abstract][Full Text] [Related]
12. Substrate and product analogues as human O-GlcNAc transferase inhibitors. Dorfmueller HC; Borodkin VS; Blair DE; Pathak S; Navratilova I; van Aalten DM Amino Acids; 2011 Mar; 40(3):781-92. PubMed ID: 20640461 [TBL] [Abstract][Full Text] [Related]
13. Azide- and Alkyne-Bearing Metabolic Chemical Reporters of Glycosylation Show Structure-Dependent Feedback Inhibition of the Hexosamine Biosynthetic Pathway. Walter LA; Batt AR; Darabedian N; Zaro BW; Pratt MR Chembiochem; 2018 Sep; 19(18):1918-1921. PubMed ID: 29979493 [TBL] [Abstract][Full Text] [Related]
14. Metabolic Inhibitors of O-GlcNAc Transferase That Act In Vivo Implicate Decreased O-GlcNAc Levels in Leptin-Mediated Nutrient Sensing. Liu TW; Zandberg WF; Gloster TM; Deng L; Murray KD; Shan X; Vocadlo DJ Angew Chem Int Ed Engl; 2018 Jun; 57(26):7644-7648. PubMed ID: 29756380 [TBL] [Abstract][Full Text] [Related]
15. Ac Wang J; Cao W; Zhang W; Dou B; Zeng X; Su S; Cao H; Ding X; Ma J; Li X Bioorg Chem; 2023 Feb; 131():106139. PubMed ID: 36610251 [TBL] [Abstract][Full Text] [Related]
16. Chemical and Biochemical Strategies To Explore the Substrate Recognition of O-GlcNAc-Cycling Enzymes. Hu CW; Worth M; Li H; Jiang J Chembiochem; 2019 Feb; 20(3):312-318. PubMed ID: 30199580 [TBL] [Abstract][Full Text] [Related]
18. E. coli sabotages the in vivo production of O-linked β-N-acetylglucosamine-modified proteins. Goodwin OY; Thomasson MS; Lin AJ; Sweeney MM; Macnaughtan MA J Biotechnol; 2013 Dec; 168(4):315-23. PubMed ID: 24140293 [TBL] [Abstract][Full Text] [Related]
19. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Rafie K; Raimi O; Ferenbach AT; Borodkin VS; Kapuria V; van Aalten DMF Open Biol; 2017 Jun; 7(6):. PubMed ID: 28659383 [TBL] [Abstract][Full Text] [Related]