BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 3493243)

  • 1. Cooperative interaction between Ca2+ and beta,gamma-methylene adenosine triphosphate in their binding to fragmented sarcoplasmic reticulum from bullfrog skeletal muscle.
    Ogawa Y; Kurebayashi N; Harafuji H
    J Biochem; 1986 Nov; 100(5):1305-18. PubMed ID: 3493243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-ADP exchange reaction by fragmented sarcoplasmic reticulum from bullfrog skeletal muscle.
    Ogawa Y; Kurebayashi N
    J Muscle Res Cell Motil; 1982 Mar; 3(1):39-56. PubMed ID: 6804490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca-releasing action of beta, gamma-methylene adenosine triphosphate on fragmented sarcoplasmic reticulum.
    Ogawa Y; Ebashi S
    J Biochem; 1976 Nov; 80(5):1149-57. PubMed ID: 1002681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium releasing action of quercetin on sarcoplasmic reticulum from frog skeletal muscle.
    Kurebayashi N; Ogawa Y
    J Biochem; 1984 Oct; 96(4):1249-55. PubMed ID: 6240492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature on [3H]ryanodine binding to sarcoplasmic reticulum from bullfrog skeletal muscle.
    Ogawa Y; Harafuji H
    J Biochem; 1990 Jun; 107(6):887-93. PubMed ID: 2391349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmolarity-dependent characteristics of [3H]ryanodine binding to sarcoplasmic reticulum.
    Ogawa Y; Harafuji H
    J Biochem; 1990 Jun; 107(6):894-8. PubMed ID: 2391350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P1,P5-Di(adenosine-5')pentaphosphate(Ap5A) as an inhibitor of adenylate kinase in studies of fragmented sarcoplasmic reticulum from bullfrog skeletal muscle.
    Kurebayashi N; Kodama T; Ogawa Y
    J Biochem; 1980 Sep; 88(3):871-6. PubMed ID: 6252207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum.
    Berman MC; McIntosh DB; Kench JE
    J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of calcium and magnesium on binding of beta, gamma-methylene ATP to sarcoplasmic reticulum.
    Pang DC; Briggs FN
    J Biol Chem; 1977 May; 252(10):3262-6. PubMed ID: 863883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient kinetics of formation of phosphorylated intermediate (EP) by fragmented sarcoplasmic reticulum from bullfrog skeletal muscle: ligand addition sequence-dependent rate of EP formation.
    Ogawa Y; Harafuji H
    J Biochem; 1986 Nov; 100(5):1319-28. PubMed ID: 2950081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides.
    Meissner G; Darling E; Eveleth J
    Biochemistry; 1986 Jan; 25(1):236-44. PubMed ID: 3754147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ca-releasing action of halothane on fragmented sarcoplasmic reticulum.
    Ogawa Y; Kurebayashi N
    J Biochem; 1982 Sep; 92(3):899-905. PubMed ID: 7142126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Calcium release from vesicles of heavy sarcoplasmic reticulum of rabbit skeletal muscles].
    Smirnova MB; Rubtsov AM; Boldyrev AA
    Ukr Biokhim Zh (1978); 1989; 61(1):57-64. PubMed ID: 2472698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High affinity binding of 9-[3H]methyl-7-bromoeudistomin D to the caffeine-binding site of skeletal muscle sarcoplasmic reticulum.
    Fang YI; Adachi M; Kobayashi J; Ohizumi Y
    J Biol Chem; 1993 Sep; 268(25):18622-5. PubMed ID: 7689557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles.
    Souza DO; de Meis L
    J Biol Chem; 1976 Oct; 251(20):6355-9. PubMed ID: 185211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: a comparison with skinned muscle fiber studies.
    Kirino Y; Shimizu H
    J Biochem; 1982 Oct; 92(4):1287-96. PubMed ID: 6294069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate.
    Yoshida H; Tonomura Y
    J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel.
    Tripathy A; Meissner G
    Biophys J; 1996 Jun; 70(6):2600-15. PubMed ID: 8744299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ release from sarcoplasmic reticulum vesicles derived from longitudinal reticulum and terminal cisternae of frog skeletal muscle.
    Koshita M; Yamamoto M; Hotta K
    J Biochem; 1982 Oct; 92(4):1103-8. PubMed ID: 6217198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.