These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34932468)

  • 1. Phase-Spatial Beamforming Renders a Visual Brain Computer Interface Capable of Exploiting EEG Electrode Phase Shifts in Motion-Onset Target Responses.
    Libert A; Wittevrongel B; Camarrone F; Van Hulle MM
    IEEE Trans Biomed Eng; 2022 May; 69(5):1802-1812. PubMed ID: 34932468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytic beamformer transformation for transfer learning in motion-onset visual evoked potential decoding.
    Libert A; Van Den Kerchove A; Wittevrongel B; Van Hulle MM
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35366653
    [No Abstract]   [Full Text] [Related]  

  • 3. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.
    Wittevrongel B; Van Wolputte E; Van Hulle MM
    Sci Rep; 2017 Nov; 7(1):15037. PubMed ID: 29118386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.
    Beveridge R; Wilson S; Coyle D
    Prog Brain Res; 2016; 228():329-53. PubMed ID: 27590974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Single-Stimulus, Multitarget BCI Based on Retinotopic Mapping of Motion-Onset VEPs.
    Chen J; Li Z; Hong B; Maye A; Engel AK; Zhang D
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):464-470. PubMed ID: 29993456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain-computer interface using motion-onset visual evoked potential.
    Guo F; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Dec; 5(4):477-85. PubMed ID: 19015582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.
    Ma T; Li H; Yang H; Lv X; Li P; Liu T; Yao D; Xu P
    J Neurosci Methods; 2017 Jan; 275():80-92. PubMed ID: 27845150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces.
    Sun Q; Zhang S; Dong G; Pei W; Gao X; Wang Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding the covert shift of spatial attention from electroencephalographic signals permits reliable control of a brain-computer interface.
    Reichert C; Dürschmid S; Bartsch MV; Hopf JM; Heinze HJ; Hinrichs H
    J Neural Eng; 2020 Oct; 17(5):056012. PubMed ID: 32906103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a fully spatially coded brain-computer interface: simultaneous decoding of visual eccentricity and direction.
    Chen J; Hong B; Wang Y; Gao X; Zhang D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3091-3094. PubMed ID: 31946541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of code-modulated visual evoked potentials using adaptive modified covariance beamformer and EEG signals.
    Zarei A; Mohammadzadeh Asl B
    Comput Methods Programs Biomed; 2022 Jun; 221():106859. PubMed ID: 35569239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurogaming With Motion-Onset Visual Evoked Potentials (mVEPs): Adults Versus Teenagers.
    Beveridge R; Wilson S; Callaghan M; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):572-581. PubMed ID: 30869627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High gamma oscillations enhance the subdural visual speller.
    Song H; Zhang D; Ling Z; Zuo H; Hong B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1711-4. PubMed ID: 23366239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New approach for designing cVEP BCI stimuli based on superposition of edge responses.
    Yasinzai MN; Ider YZ
    Biomed Phys Eng Express; 2020 Jun; 6(4):045018. PubMed ID: 33444278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doubling the Speed of N200 Speller via Dual-Directional Motion Encoding.
    Liu D; Liu C; Chen J; Zhang D; Hong B
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):204-213. PubMed ID: 32746042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic detection of code-modulated visual evoked potentials using novel covariance estimators and short-time EEG signals.
    Zarei A; Mohammadzadeh Asl B
    Comput Biol Med; 2022 Aug; 147():105771. PubMed ID: 35792474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
    Waytowich NR; Krusienski DJ
    J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DF-SSmVEP: Dual Frequency Aggregated Steady-State Motion Visual Evoked Potential Design with Bifold Canonical Correlation Analysis.
    Karimi R; Mohammadi A; Asif A; Benali H
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.